Another PGC International Study Tour
Developed & Managed by Porter GeoConsultancy
IOCG 2013
Australian Iron Oxide Copper-Gold Deposits
19 to 27 February, 2013
Porter GeoConsultancy Home Page | More on This Tour | Other Tours | New Tours | Contact us
Ernest Henry Ore
Image: Magnetite-chalcopyrite ore, Ernest Henry    
CONTENT and DESCRIPTIONS OF ORE DEPOSITS

   Porter GeoConsultancy, continued its International Study Tour series of professional development courses during February 2013 by visiting a representative selection of the different styles, and the most important examples, of iron oxide copper-gold deposits of the Gawler-Curnamona craton in South Australia and the Eastern Fold Belt of the Mount Isa Inlier in NW Queensland.
   The mine and project visits were complemented by field & classroom workshops presented by experts from academia, government geological surveys and industry.
   The full tour commenced in Adelaide, South Australia on the evening of Monday 18 February, 2013 and ended in Brisbane, Queensland, on the evening of Wednesday 27 February.
   Participants were able to take any 3 or more days, up to the full tour, as suited their interests or availability, with participants joining and leaving the tour at appropriate locations along the route.

The main components of the planned itinerary were:
Scheduled dates for each visit or workshop is shown alongside the heading of the respective description below.

Our International
Study Tour Series
The last tour was
OzGold 2019
Our Global Perspective
Series books include:
Click Here
Super Porphyry Cu and Au

Click Here
IOCG Deposits - 70 papers
All available as eBOOKS
Remaining HARD COPIES on
sale. No hard copy book more than  AUD $44.00 (incl. GST)
Big discount all books !!!
Adelaide Workshop - Hosted by DMITRE Minerals  -  SA Government   ........... Tuesday 19 February, 2013.

This workshop included expert lectures in a classroom setting, supported by drill core at the nearby  DMITRE Minerals core library  in Adelaide.   It included:
  • A global overview of the occurrence of Iron Oxide Copper-Gold and related Iron-oxide Associated, Alkali-altered mineralised systems by Mike Porter;
  • Overview presentations on the tectonics, geology and geophysical expression of the Gawler-Curnamona craton, and the distribution and controls of IOCG mineralisation in the craton as a whole, and within individual districts, delivered by DMITRE Minerals specialists Martin Fairclough (Chief Geoscientist), Adrian Fabris, Simon van der Weilan and Claire Wade, and expert consultant Dr Colin Conor;
  • An outline of the geology and mineralisation of significant IOCG and related occurrences from the Olympic IOCG Province, other than those to be visited. These included:
    - magnetite deposits devoid of Cu-Au (<500 ppm Cu) mineralisation (e.g., Murdie Murdie);
    - magnetite±hematite with 0.1 to 0.3% Cu throughout (e.g., Titan and Manxman A1); and
    - magnetite±hematite with sub-economic to economic byproduct Cu-Au (e.g., Emmie Bluff and Cairn Hill);
  • Inspection of drill core through the deposits described in the previous point that is held at the DMITRE core library;
  • Expert presentation and study of drill core from the Kalkaroo deposit, including its regional setting within the Curnamona Province (Dr Chris Giles of Havilah Resources). Kalkaroo (see description from the link above) is a significant deposit in advanced feasibility with a total resource of 124.51 Mt @ 0.50% Cu, 0.39 g/t Au. The presentation included a detailed demonstration of the deposit using the Vulcan 3D ore model with all data. The deposit is located on a featureless arid plain below cover, with no outcrop, and hence an actual site visit was not undertaken.
Return to top


Geological summaries   of the deposits visited are as follows:

Hillside Project, Yorke Pensinsula, South Australia  -  Rex Minerals   ............ Wedneday 20 February, 2013.

The Hillside copper-gold deposit is located on the east coast of Yorke Peninsula, approximately 15 km south of Ardrossan, 72 km NW of Adelaide, and 48 km SW of Port Wakefield which is situated at the head of Gulf St Vincent in South Australia. It is 455 km south of Olympic Dam.

The Hillside and other similar IOCG-style occurrences and deposits of the Moonta-Wallaroo district, and the Olympic Dam, Prominent Hill and Carrapateena copper-gold (uranium) deposits are hosted within Palaeo- to Mesoproterozoic rocks of the Olympic IOCG Province that extends along the eastern margin of the currently preserved Gawler Craton. Underlying and to the west is Mesoarchaean to Palaeoproterozoic basement, partly overlain by the thick Mesoproterozoic Gawler Range Volcanics (GRV). Unconformably overlying these deposits are the Neoproterozoic sediments of the Stuart Shelf marking the western platformal flank of the Adelaide Geosyncline, an intracontinental rift-complex developed as a response to the late Neoproterozoic break-up of the Rodinian Super-continent.

The predominantly sub-cropping host to the Moonta-Wallaroo region comprise the volcano-sedimentary succession of the Palaeoproterozoic Wallaroo Group, and early Mesoproterozoic granites and mafic rocks of the Hiltaba Suite. The underlying basement of the region is believed to include gneissic granitoids of the ~1850 Ma Donnington Suite, which are uplifted and exposed in the southern part of Yorke Peninsula by faulting that limits the southern extent of the Moonta sub-domain (Raymond, 2003). The Moonta-Wallaroo region, which is located on the western flank of the Neoproterozoic Adelaide Geosyncline rift, is unconformably overlain and almost totally blanketed by thin, incomplete, successions of Neoproterozoic, Cambrian, Permian and Tertiary sediments upon which the present day regolith and soils are developed.

The Hillside IOCG (LREE-U) deposit was discovered in early in 2008 by Rex Minerals Ltd as a result of exploration drilling of discrete magnetic and gravity features spatially associated with the regional NNE-trending Pine Point (Ardrossan) Fault, adjacent to the historic Hillside copper mine. It represents the southern extension of the mineralisation exploited by that mine, which was active prior to 1916 and between 1929 and 1932, produced around 50 tonnes of ore for 8 tonnes of recovered copper (Wade and Cochrane, 1954), with grades varying from 0.5% to 44% Cu. The historic ore was taken from two NE-striking, 70 to 80° W dipping lodes that varied from <0.5 to 3 m in thickness, and comprised chalcopyrite, bornite, malachite, chalcocite, atacamite and covellite, hosted in brecciated and sheared schist with quartz stringers.

The Hillside mineralisation is concealed by a sequence of Tertiary calcareous sediments ranging from <1 to 30 m in thickness, locally occuring as up to 30 m thick channel-fill alluvium in NNW-trending palaeochannels. Gravity and magnetic features confined to the Pine Point Fault structure most likely represent gabbroic intrusives emplaced within this structural corridor, while immediately to the east and parallel to the Pine Point Fault, there is a large magnitude, >40 km long, deep seated geophysical anomaly (the Ardrossan-Snowtown Magnetic-Gravity Feature) which may have some bearing on mineralisation along the Pine Point Fault trend.

The structural style of the Hillside mineralising system, like those at the Moonta-Wallaroo mines, the deeper Cloncurry-style IOCG(U) deposits (e.g., Starra; Williams et al., 2005; Mt. Elliott; Fortowski & McCracken, 1998; and Wang and Williams, 2001) and some of the IOCG-style deposits from the Curnamona Province (e.g., Kalkaroo; Teale, 2006) with mineralisation hosted within discrete, but apparently laterally and vertically continuous, structures. This structural style is in contrast to the Olympic Dam and Carrapateena-style IOCG(U) deposits that are characterised by large polygonal to circular hematite-dominant breccia bodies.

The Hillside deposit is hosted by highly deformed and folded metasediments of the Wallaroo Group, intruded by Mesoproterozoic igneous rocks which comprise numerous phases of granite, micro-gabbro, porphyritic gabbro and gabbro-diorite, presumed to be related to the Hiltaba Suite. The metasediments are invariably intensely altered within the Pine Point structural corridor, but have also commonly undergone late retrogression. All intrusions, including numerous pegmatites that have been emplaced along minor structures, have been intensely altered, including both endoskarns and exoskarns.

Gabbroic rocks in the Hillside area contain an early high temperature potassic alteration accompanied by the development of magnetite-biotite-K feldspar±bornite. The late replacement of plagioclase by K feldspar is common.

The copper-gold-(uranium) mineralisation is hosted within metasediments and meta-mafic rocks and can develop within and adjacent to gabbros and A-type felsic intrusives. The metasediments are folded by pre-intrusion open to tight, south-plunging folds, including both upright folds (local F2), and a series of recumbent to strongly inclined folds (local F1). The local F1 folds are also associated with possible early thrusts in some sections. Folds have a north to NE trend, with some evidence for later NW cross-folding in some areas. The folding varies from parallel-coincident, to acutely discordant to the north-south trending skarn and breccia bodies.

Significant mineralisation is focussed in numerous, north-trending, sub-vertical to steeply west dipping bodies intimately associated with prograde and retrograde skarn assemblages and associated steeply west-dipping 'breccia' structures. Mineralisation and associated skarn development is variable both laterally and vertically. The overall depth extent of the individual high-grade mineralised zones suggests mineralisation was emplaced over a vertical interval of >700 m. Stratabound replacement of metasediments occurs adjacent to the skarns, e.g., in the immediate footwall of the western branch of the Pine Point Fault structure.

Three major separate anastomosing, ~1.5 km long copper-mineralised structures have been defined, the Zanoni, 'Songvaar' and 'Parsee' structures. These structures are broadly defined by a magnetic anomaly that exists over an area that is 2 km long and 500 m wide. Together they have a combined strike length in excess of 4 km, although copper mineralisation remains open both along strike and at depth, and has been observed from as shallow as 5 m below surface to 700 m in depth.

Numerous high to low temperature skarns are developed within the Hillside deposit. The earliest, higher temperature phases are dominated by magnetite±quartz±pyrite±garnet and almost monomineralic garnet skarn. The earlier skarns are replaced by clinopyroxene, K feldspar, epidote, actinolite, allanite and biotite-rich assemblages with, for example, clinopyroxene-bearing skarn often developed on the margins of and replacing garnet skarn. Primary copper mineralisation developed within and adjacent to skarn lithotypes, comprises high grade, parallel, steeply-dipping domains which may be flanked by lower grade vein, blebby and lace-like chalcopyrite accumulations.

Primary copper mineralisation at Hillside is dominantly chalcopyrite with lesser bornite and chalcocite, with the latter two phases often intergrown with apparent common unmixing textures, although some parts also contain significant primary bornite and chalcocite. These sulphides coincide with extremely oxidised domains, and bornite is often found with carbonate and hematite and magnetite is replaced by hematite±chalcopyrite. Extreme increases in copper grades are accompanied by late carbonate and silica flooding, and in many areas are associated with the development of chlorite+chalcopyrite which replace clinopyroxene, actinolite and garnet. Pyrite is abundant in some domains but is usually replaced by chalcopyrite during skarn retrogression. Gold appears to be hosted in chalcopyrite. Rare galena, tennantite, bismuthinite and aikinite are present and uraninite and pitchblende are often associated with carbonate-rich zones. LREE are contained within allanite.

Post-mineralisation faulting is evident, particularly north-trending, steep to sub-vertical structures, and others that are moderate to shallow and NW-trending. Recent U-Pb isotopic dating of two titanite samples from alteration at Hillside indicate that the alteration is broadly coeval with granite emplacement (1570±8 Ma; Gregory in Reid, 2010), which relates to the latest stage of Hiltaba Suite magmatism in the wider Olympic Copper-Gold Province.

Secondary copper mineralisation is predominantly supergene chalcocite with lesser malachite, azurite, native copper and rare cuprite, atacamite and chrysocolla, overlying primary copper mineralisation along the eastern domains of the deposit ('Songvaar' and 'Parsee' structures and elsewhere in the deposit).

The inferred mineral resource at 27 July 2011 (Rex Minerals release to the ASX) was:
    217 Mt @ 0.7% Cu, 0.2g/t Au, 12.4% Fe

The inferred mineral resource at 30 July 2012 (Rex Minerals release to the ASX) to depths of 400 to 700 m, was:
    330 Mt @ 0.6% Cu, 0.16 g/t Au, 13.7% Fe, at a 0.2% Cu cutoff. -or-,
    226 Mt @ 0.7% Cu, 0.18 g/t Au, 14.1% Fe, at a 0.4% Cu cutoff. -or-,
    116 Mt @ 0.9% Cu, 0.20 g/t Au, 14.2% Fe, at a 0.6% Cu cutoff.
Within the 0.2% Cu cutoff resource, there are indicated + inferred resources of :
    oxide ore - 22 Mt @ 0.54% Cu, 0.22 g/t Au, 12.8% Fe, and
    secondary sulphide ore -13 Mt @ 0.59% Cu, 0.12 g/t Au, 13.5% Fe, and
    primary sulphide ore - 294 Mt @ 0.60% Cu, 0.12 g/t Au, 13.75% Fe.

For more detail see: Conor, C. Raymond, O., Baker, T., Teale, G, Say, P. and Lowe, G., , 2010 - Alteration and Mineralisation in the Moonta-Wallaroo Copper-Gold Mining Field Region, Olympic Domain, South Australia; in Porter, T.M., (ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, v. 3 - Advances in the Understanding of IOCG Deposits; PGC Publishing, Adelaide, pp. 147-170.

Return to top


Carrapateena  -  East of Woomera, Northern South Australia  -  OZ Minerals   ...................... Thursday 21 February, 2013.

The Carrapateena iron oxide copper-gold deposit, which is located within the Olympic IOCG Province on the eastern rim of the preserved Gawler craton in northern South Australia, is ~100 km SSE of Olympic Dam and ~130 km north of Port Augusta in South Australia, immediately to the SW of the Carrapateena embayment on the central-western shore of Lake Torrens.

Regional Setting

Carrapateena, Olympic Dam, Prominent Hill, Moonta-Wallaroo and Hillside and all of the other significant known IOCG mineralised systems of the Gawler craton are hosted within Palaeo- to Mesoproterozoic rocks and are distributed along the eastern edge of the currently preserved craton to define the Olympic IOCG Province.

The oldest rocks of the Gawler craton comprise Mesoarchaean to early Palaeoproterozoic metamorphics and igneous suites that form a core to the craton, immediately to the west of the Olympic IOCG Province. On its eastern margin, and within the Olympic IOCG Province, this older nucleus was overlain after ~2000 Ma by the Hutchison Group, a sequence of subaerial to shallow marine clastic and chemical metasedimentary rocks, with minor felsic and mafic volcanic rocks, that were deposited on a continental passive margin (Parker, 1993; Daly et al., 1998). Along the eastern margin of the craton, including the Carrapateena district, the cratonic core and the Hutchison Group were both intruded by ~1850 Ma granitoids of the Donington Suite during the Cornian orogeny (Hand et al., 2007; Reid et al., 2008). This suite is dominated by granodiorite gneiss, with subordinate metamorphosed alkali-feldspar granite, gabbronorite, tonalite and quartz monzonite intrusions with mafic dykes (Ferris et al., 2002). Between ~1770 and 1740 Ma, subsequent to the emplacement of the Donington Suite, extension along the eastern, northern and western margins of the craton, resulted in the development of a series of extensive basins, some of which contain bimodal volcanic rocks, including the Wallaroo Group, which is extensively developed within the Olympic IOCG Province and is an important host to IOCG alteration and mineralisation. During the Palaeoproterozoic, the Curnamona Province is believed to have collided with and been accreted to the Gawler craton in the east. A major linear discontinuity in magnetic and gravity data beneath the Neoproterozoic cover of the Adelaide Geosyncline intracratonic rift complex is interpreted to mark the suture zone (Hayward and Skirrow, 2010, and sources quoted therein). The interval between ~1730 and ~1630 Ma encompasses the Kimban orogeny (1730 to 1690 Ma), Ooldean Event (1660 to 1630 Ma), and the widespread emplacement of various felsic igneous rocks, and formation of several small intracontinental sedimentary basins (Hand et al., 2007).

Towards the close of the Palaeoproterozoic, from ~1630 to 1615 Ma, the Nuyts Volcanics and St Peter Suite bimodal magmas were emplaced in the southwestern part of the Gawler craton, which although poorly exposed, cover an extensive area (Fanning et al., 2007). Between ~1600 and ~1575 Ma the centre of magmatism shifted eastward with the development of the high-volume intrusive Hiltaba Suite and extensive co-magmatic bimodal Gawler Range Volcanics (GRV) to form a large felsic igneous province (covering a preserved area of >25 000 km
2) over the central and eastern parts of the Gawler craton, including the Olympic IOCG Province. Between 1580 to 1550 Ma, magmatism progressed eastward to form the Benagerie volcanics and Bimbowrie Suite I- and S-types in the Curnamona Province, the easternmost development of the diachronous eastnortheast-trending corridor of continental I- and A-type magmatism that extends across the Gawler and Curnamona cratons from the St Peter Suite in the southwestern part of the craton (Hayward and Skirrow, 2010).

Known significant IOCG districts/deposits within the Olympic IOCG Province, including Carrapateena, are found where oxidised (magnetite-series), A-type granitoid plutons of the 1595 to 1575 Ma Hiltaba Suite which were emplaced into an accreted Palaeoproterozoic terrane, and where mafic volcanic rocks of the lower GRV are most abundant. These rocks were emplaced during a short-lived episode of NNW-SSE extension that approximately coincided with eruption of the GRV (~1595 to 1590 Ma), preceded and followed by more protracted NW-SE to NNW-SSE contraction (Hayward and Skirrow, 2010).

Tectonism subsequently appears to have migrated northwards and westward, with the ~1570 to 1540 Ma Kararan and 1470 to 1440 Ma Coorabie orogenies respectively. The Archaean to Mesoproterozoic crystalline basement rocks of the Gawler craton were not subjected to any substantial deformation after ~1450 Ma until the early Palaeozoic Delamerian orogeny (Parker, 1993). Much of the Olympic IOCG Province is overlain by flat lying Neoproterozoic to Lower Palaeozoic sedimentary rocks of the Stuart Shelf, equivalents of the sedimentary succession of the Adelaide Geosyncline intracratonic rift complex which separates the Gawler craton and Curnamona Province and was the result of extension preceding and during the rifting and break-up of the Rodinia supercontinent from immediately to the east of the Curnamona Province.

Carrapateena Geology and Mineralisation

The Carrapateena deposit is hosted by strongly brecciated granitoids (variably foliated and/or sheared gneissic quartz-granite and quartz-diorite) which have been dated at 1857±6 Ma and are assigned to the Palaeoproterozoic Donington Suite. It occurs within the core of a north-south oriented, 30 x 100 km mass of that suite, that is overlain 10 to 15 km to the west by ~1590 Ma mafic and felsic volcanic rocks of the Gawler Range Volcanics, which are comagmatic with the Hiltaba Suite granitoids that host the Olympic Dam deposit.

The ore deposit lies beneath a ~470 m thickness of flat lying Neoproterozoic sedimentary rocks, and occupies a north-south elongated area of approximately 800 x 600 m at the unconformity surface with the underlying Palaeoproterozoic host rocks. It is reflected by a broad, weak and diffuse 200 nT magnetic peak and a slightly offset, ellipsoidal, 3.5 km diameter, 2 mGal gravity anomaly.

Mineralisation is confined to a steeply plunging, pipe-like body of hematite and hematite-granite breccia, the Carrapateena Breccia Complex (CBC), which is interpreted to be cut at its centre by an east-west- to eastnortheast-trending complex zone of faulting. To the north of this inferred zone of faulting, the mineralised mass is wedge-shaped, tapering rapidly downward into the fault zone and may conceivably follow that structure to depth.

The Carrapateena Breccia Complex (CBC) varies from heterolithic clast- to matrix-supported hematite-rich breccias. Many of the clasts are milled and rounded such that the 'breccia' may have the appearance of a 'conglomerate' when samples are viewed in isolation. The clasts are predominantly of medium grained, gneissic diorite, with granite gneiss and vein quartz, variably altered to chlorite, sericite and hematite, as well as hematite-dominated clasts of earlier breccia phases within a matrix with a variety of textures that has also been altered to an assemblage of hematite, quartz and sericite. Higher grade copper intersections are typically associated with a grey hematite matrix within strongly brecciated granite.

To the south, the CBC comprises an irregular, ~300 to 400 m diameter, ellipsoidal-cylindrical mineralised body that has been traced by drilling from the unconformity to a depth in excess of 1 km below that surface, from where it continues unclosed.

Mineralisation is zoned laterally outward, and to the north, vertically downward, from bornite to chalcopyrite-bornite to chalcopyrite to chalcopyrite-pyrite. Three kernels of bornite-rich mineralisation have been delineated, one wedge-shaped zone to the northeast that tapers southward into the inferred central zone of faulting, and two steeply plunging elongate zones, one above the other, in the upper and lower parts of the core to the main mineralised pipe-like mass of the CBC in the south.

The principal alteration minerals are hematite, chlorite and sericite, with locally abundant quartz and carbonate (siderite and/or ankerite), and secondary barite, monazite, anatase, magnetite, apatite, fluorite and zircon.

Reserves and Resources

An audited inferred (OZ Minerals, 2011) resource for the main deposit, in the southern half of the deposit area, at a cut-off of 0.7% Cu, totals:
    203 Mt @ 1.31% Cu, 0.56 g/t Au, 0.27 kg/t U
308, 6 g/t Ag;
The northern half, has a potential to contain a further:
    25 to 45 Mt @ 1.0 to 1.1% Cu, 0.4 g/t Au, 0.14 kg U
308.

The estimated Mineral Resource at 31 October 2012 (Oz Minerals ASX Release, 21 January, 2013) has been upgraded to:
    Indicated Resource at
      0.3% Cu cut-off - 392 Mt @ 0.97% Cu, 0.39 g/t Au, 165 ppm U, 4.2 g/t Ag;
      0.5% Cu cut-off - 282 Mt @ 1.20% Cu, 0.48 g/t Au, 197 ppm U, 5.2 g/t Ag;
      0.7% Cu cut-off - 202 Mt @ 1.43% Cu, 0.56 g/t Au, 227 ppm U, 6.2 g/t Ag;
    Inferred Resource at
      0.3% Cu cut-off - 368 Mt @ 0.58% Cu, 0.21 g/t Au, 120 ppm U, 2.3 g/t Ag;
      0.5% Cu cut-off - 193 Mt @ 0.76% Cu, 0.26 g/t Au, 144 ppm U, 2.8 g/t Ag;
      0.7% Cu cut-off -   90 Mt @ 0.96% Cu, 0.30 g/t Au, 162 ppm U, 3.6 g/t Ag;
    Total Resource at
      0.3% Cu cut-off - 760 Mt @ 0.78% Cu, 0.30 g/t Au, 143 ppm U, 3.3 g/t Ag;
      0.5% Cu cut-off - 475 Mt @ 1.02% Cu, 0.39 g/t Au, 175 ppm U, 4.2 g/t Ag;
      0.7% Cu cut-off - 292 Mt @ 1.29% Cu, 0.48 g/t Au, 207 ppm U, 5.4 g/t Ag;

Ore reserves at 18 August, 2014 and mineral resources at 31 November 2013 (OZ Minerals ASX releases), were:
  Indicated + inferred resources at 0.3% Cu cutoff - 800 Mt @ 0.8% Cu, 0.3 g/t Au, 3.3 g/t Ag, 0.155 kg/t U;
  probable reserves, lift 1 from 470 to 970 m below surface - 110 Mt @ 0.9% Cu, 0.5 g/t Au, 5.3 g/t Ag;
  probable reserves, lift 2 from 970 to 1470 m below surface - 160 Mt @ 1.0% Cu, 0.4 g/t Au, 4.3 g/t Ag;
  TOTAL probable reserves - 270 Mt @ 0.9% Cu, 0.4 g/t Au, 4.5 g/t Ag.

JORC compliant Mineral resources as at 25 September 2015 (OZ Minerals press release to the ASX) were as follows, based on a AUD 120/t NSR (AUD=USD 0.78) cut-off:
  Indicated resource - 55 Mt @ 2.4% Cu, 0.9 g/t Au, 11.7 g/t Ag, 335 ppm U;
  Inferred resource 6 Mt @ 2.5% Cu, 0.7 g/t Au, 11.6 g/t Ag, 257 ppm U;
  TOTAL resource 61 Mt @ 2.4% Cu, 0.9 g/t Au, 11.7 g/t Ag, 328 ppm U.

JORC compliant Mineral resources as at 18 November 2016 (OZ Minerals press release to the ASX August, 2017) were as follows, based on a AUD 70/t NSR cut-off:
  Measured resource - 61 Mt @ 1.4% Cu, 0.6 g/t Au, 6.3 g/t Ag;
  Indicated resource - 65 Mt @ 1.6% Cu, 0.6 g/t Au, 7.0 g/t Ag;
  Inferred resource - 8 Mt @ 0.8% Cu, 0.4 g/t Au, 3.5 g/t Ag;
  TOTAL resource 134 Mt @ 1.5% Cu, 0.6 g/t Au, 6.5 g/t Ag.

For more detail see: Porter, T.M., 2010 - The Carrapateena Iron Oxide Copper Gold Deposit, Gawler Craton, South Australia: a Review; in Porter, T.M., (ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, v. 3 - Advances in the Understanding of IOCG Deposits; PGC Publishing, Adelaide, pp. 191-200.

Khamsin Deposit

The satellite Khamsin copper-gold deposit, ~10 km to the northwest of Carrapateena, is also an iron oxide copper-gold (IOCG) occurrence. Mineralisation is hosted within the Khamsin Breccia Complex, a polymictic granite-hematite-carbonate breccia which is surrounded by altered Donington Suite granite and some dykes, and is overlain by approximately 460 to 680 m of mostly Neoproterozoic sedimentary cover. Mineralisation occurs as fine- to medium-grained blebby disseminations of chalcopyrite, rare bornite and minor chalcocite, and mostly occur as either disseminations in the breccia matrix or within clasts (OZ Minerals ASX release, 2014).
  The first drill hole into the deposit intersected 440.6 m @ 0.43% Cu, 0.08 g/t Au from 1005.4 m depth, including 26.7 m @ 1.48% Cu, 0.13 Au g/t from 1005.4 m, within a broader zone of 569.6 m @ 0.39% Cu, 0.08 g/t Au from 1003 m (Oz Minerals ASX Release, 21 January, 2013). The hole was drilled at a dip of -55° and azimuth of 173°. This mineralised intersection comprises a strong, grey hematite and chlorite altered, clast and matrix supported, heterolithic granite breccia.
  The alteration and mineralisation style encountered is comparable to that intersected on the margins of the main Carrapateena deposit. This mineralisation coincides with a significant gravity feature that is both larger in size and has the same intense residual gravity response as that related to the Carrapateena deposit. It displays a prominent co-incident magnetic feature located within the central portion of the gravity anomaly. Depths to basement for Khamsin vary between 480 and 630 m below surface (Oz Minerals, 2013).
  The Khamsin prospect was previously the Salt Creek anomaly that was tested by a number of vertical drill holes in the late 1970s and early 1980s following the discovery of Olympic Dam, targeting the gravity and/or aeromagnetic highs. One of these holes, SASC04, was completed at 1250 m and intersected hematite-sericite altered granitoids of the Mesoproterozoic Donington Suite from a depth of 540 m to the bottom of the hole, but without significant sulphide or associated copper mineralisation.

Mineral resources at 26 May 2014 (OZ Minerals ASX release), were:
  Indicated + inferred resources at 0.3% Cu cutoff - 202 Mt @ 0.6% Cu, 0.1 g/t Au, 1.7 g/t Ag, 0.086 kg/t U.

Fremantle Doctor

An arm of the broadly coincident ~1.5 mGal gravity and 200 nT magnetic anomalies that reflect the Carrapateena deposit extend a further 2 km to the north-east overlie the Freemantle Doctor deposit and represent a continuation of iron oxide alteration. This deposit is hosted within Donington Suite granite and is unconformably overlain by ~480 m of unmineralised Neoproterozoic sediment rocks. Mineralisation and alteration is similar to that at Carrapateena.

Mineral Resources at 12 November 2018 (OZ Minerals ASX release), were:
  Inferred resources at 0.4% Cu cutoff - 104 Mt @ 0.7% Cu, 0.5 g/t Au, 3 g/t Ag.

Return to top


Olympic Dam  -  Roxby Downs, Northern South Australia  -  BHP Billiton Limited   ...................... Friday 22 February, 2013.

The Olympic Dam copper-gold-uranium-REE ore deposit is located some 550 km NNW of Adelaide and 275 km NNW of Port Augusta, in northern South Australia (#Location: 30° 26' 24"S, 136° 53' 22"E).

Olympic Dam and all of the other significant known IOCG mineralised systems of the Mesoarchaean to Mesoproterozoic Gawler Craton are hosted within Palaeo- to Mesoproterozoic rocks, and are distributed along the eastern rim of the currently preserved craton to define the Olympic IOCG Province (Skirrow et al., 2007).   Olympic Dam lies below the Neoproterozoic Stuart Shelf, where >300 m of flat lying, barren, Neoproterozoic to lower Palaeozoic sedimentary rocks unconformably overlie both the craton and the ore deposit. Some 75 km to the east, this cover sequence expands over the major NNW trending Torrens Hinge Zone at the edge of the craton, into the thick succession of the north-south aligned Neoproterozoic Adelaide Geosyncline rift basin, that masks the mid- to late-Palaeoproterozoic suture between the Gawler craton and Palaeo- to Mesoproterozoic Curnamona Province to the east.

The oldest basement rocks in the Gawler craton are Meso- to Neoarchaean gneisses (to the west) and metasedimentary and meta-volcanosedimentary rocks, and deformed granites correlated with the Palaeoproterozoic 1.96 to 1.85 Ga Hutchison Group, the 1.79 to 1.74 Ga Wallaroo Group, and the 1.85 to 1.69 Ga Lincoln Complex (Donington Suite) granitoids, respectively. These rocks are intruded by the widespread Mesoproterozoic A- and I-type granitoids of the ~1.59 Ga Hiltaba Suite (with the former dominating in the Olympic IOCG Province) and are overlain by comagmatic bimodal volcanic rocks of the areally extensive Gawler Range Volcanics (GRV).

Mineralisation at Olympic Dam is hosted by the 50 km
2 Olympic Dam Breccia Complex (ODBC) that is developed within the Mesoproterozoic (1600 to 1585 Ma) Roxby Downs Granite. The Roxby Downs Granite is a pink to red coloured, undeformed, unmetamorphosed, coarse to medium grained, quartz-poor syenogranite with A-type affinities that is petrologically and petrochemically similar to granitoids of the Hiltaba Suite. Other lithologies within the ODBC comprise a variety of granite- to hematite-rich breccias, sedimentary facies, felsic/mafic/ultramafic dykes, volcaniclastic units, basalts and their altered/mineralised equivalents. The ODBC and the surrounding Roxby Downs Granite form a local basement high on a broader regional basement uplift.

Within the overall alteration envelope, the distribution of mineralisation and alteration exhibits a downward and outward zonation, while the ODBC correspondingly comprises a downward narrowing, funnel-shaped body of fractured, brecciated and hydrothermally altered granite which has resulted in a great variety of granitic, hematitic and siliceous breccias. The complex has a conical, downward tapering, central "core" of barren, but intensely altered hematite-quartz-breccia, passing outwards through concentrically zoned breccia types, including heterolithic hematite breccias (with clasts dominantly of granite and recycled hematite breccias, and domains where abundant sedimentary and volcaniclastics rocks predominate locally), to monoclastic granite breccias with a magnetite/hematite matrix, to weak incipient microfracturing of the RDG on the outer margins. A halo of weakly altered and brecciated granite extends out approximately 5 to 7 km from the core in all directions to an indistinct and gradational margin with the host granite. This progression represents an outward decrease in the degree of brecciation and intensity of iron metasomatism away from the core of the complex. The quantity of recycled hematite breccia, GRV and sedimentary rock clasts within the heterolithic hematite breccias decreases from shallow to deep levels (Ehrig, 2010; McPhie et al., 2010). The areal extent of more intensely hematite altered breccias within the complex is >5 km in a NW-SE direction, up to 3 km across, and is known to extend to a depth of at least 1400 m.

The development of the ODBC, which shows textural evidence of polycyclic alteration and brecciation events, can be considered as having formed by the progressive hydrothermal brecciation and iron metasomatism of the host granite. In detail, alteration assemblages are highly variable with complex mineral distribution patterns resulting from the polycyclic nature of the hydrothermal activity. Never-the-less, there are systematic patterns of alteration that are recognised across the deposit as a whole, and at the scale of individual breccia zones, with the degree of alteration intensity being directly related to the amount of brecciation.

The bulk of the mineralisation within the Olympic Dam deposit is associated with an assemblage of hematite-sericite-fluorite-barite-chalcopyrite-bornite-chalcocite (djurleite), the outer margin of which largely corresponds to the limits of the ODBC, where a deeper magnetite-carbonate-chlorite-pyrite±chalcopyrite zone marks the transition to the more regional magnetite-K feldspar±actinolite±carbonate assemblage (Ehrig, 2010). No associated sodic metasomatism has been observed.

The better mineralisation and strongest alteration outside of the barren core corresponds to the best-developed hematite-granite breccias. The concentric, moderate to steeply inward dipping breccia zones of the ODBC are cut by a convoluted, but overall roughly horizontal, ~50 m thick layer characterised by chalcocite and bornite, ~100 to 200 m below the unconformity with the overlying Neoproterozoic cover sequence. Both the upper and lower margins of this zone are mappable. Above the upper margin, sulphides are rare and little copper mineralisation is found in the same hematitic breccias. The lower margin marks a rapid transition to chalcopyrite, which decreases in copper grade downwards, corresponding to an increase in the pyrite:chalcopyrite ratio. While this zone is largely horizontal, as it approaches the central barren core it steepens markedly, but is still evident at depths of >1 km below the Neoproterozoic unconformity (Reeve et al., 1990; Reynolds, 2000; Ehrig, 2010). The geometry of this mineral zonation, strongly suggest interaction between upwelling and downward percolating fluids. For all fluids related to hematite alteration, fluid inclusion homogenisation temperatures are mostly between 150 and 300°C and salinities range from ~1 to ~23% NaCl equiv. (Knutson et al., 1992; Oreskes and Einaudi, 1992; Bastrakov et al., 2007).

The higher grade underground resource occurs as up to 150 separate bodies distributed within an annular zone up to 4 km in diameter surrounding the central barren hematite-quartz breccia. These bodies correspond to the overlap of the flat-lying chalcocite-bornite layer and the steeper, inwardly dipping ring of hematite-granite breccias.

The principal copper-bearing minerals are chalcopyrite, bornite, chalcocite (djurleite-digenite), which on the basis of Nd isotopic data, textural and geochemical features appear to have precipitated cogenetically. Minor native copper and other copper-bearing minerals are locally observed. The main uranium mineral is uraninite (pitchblende), with lesser coffinite and brannerite. Minor gold and silver is intimately associated with the copper sulphides. The main REE-bearing mineral is bastnaesite. Copper ore minerals occur as disseminated grains, veinlets and fragments within the breccia zones. Massive ore is rare.

At the end of 1989, after commencing mining operations in mid-1988, reported resources and reserves (Reeve et al., 1990) amounted to:
    Measured + indicated resource = 450 Mt @ 2.5% Cu, 0.6 g/t Au, 6.0 g/t Ag, 0.8 kg/tonne U
3O8,
    Inferred resource = 2000 Mt @ 1.6% Cu, 0.6 g/t Au, 3.5 g/t Ag, 0.6 kg/tonne U
3O8,
    Proved reserve = 13 Mt @ 3.0% Cu, 0.3 g/t Au, 10.2 g/t Ag, 1.1 kg/tonne U
3O8,
    Proved gold reserve = 2.3 Mt @ 1.6% Cu, 3.6 g/t Au, 2.9 g/t Ag, 0.3 kg/tonne U
3O8.

At December 2004, published (BHP Billiton, 2005) reserves and resources were:
    Proved+probable reserves totalled 761 Mt @ 1.5% Cu, 0.5 g/t Au, 0.5 kg/tonne U
3O8,
    within a total resource of   3810 Mt @ 1.1% Cu, 0.5 g/t Au, 0.4 kg/tonne U
3O8.

At 30 June 2012, the published resources (BHP Billiton, September, 2012) amounted to:
    Measured resource = 1474 Mt @ 1.03% Cu, 0.35 g/t Au, 1.95 g/t Ag, 0.30 kg/tonne U
3O8,
    Indicated resource = 4843 Mt @ 0.84% Cu, 0.34 g/t Au, 1.50 g/t Ag, 0.27 kg/tonne U
3O8,
    Inferred resource = 3259 Mt @ 0.70% Cu, 0.25 g/t Au, 0.98 g/t Ag, 0.23 kg/tonne U
3O8,
    Total resource = 9576 Mt @ 0.82% Cu, 0.31 g/t Au, 1.39 g/t Ag, 0.26 kg/tonne U
3O8.
This resource includes a total proved + probable reserve of:
    629 Mt @ 1.76% Cu, 0.73 g/t Au, 3.36 g/t Ag, 0.57 kg/tonne U
3O8.
At the same date, the separate non-sulphide gold resource was 364 Mt @ 0.75 g/t Au, comprising:
    Measured resource = 73 Mt @ 0.85 g/t Au;   Indicated resource = 255 Mt @ 0.73 g/t Au;   Inferred resource = 36 Mt @ 0.70 g/t Au.

At 30 June 2015, the published resources (BHP Billiton Annual Report, 2015) amounted to:
    Measured resource = 1.330 Gt @ 0.96% Cu, 0.40 g/t Au, 2.0 g/t Ag, 0.29 kg/tonne U
3O8,
    Indicated resource = 4.610 Gt @ 0.79% Cu, 0.32 g/t Au, 1.0 g/t Ag, 0.24 kg/tonne U
3O8,
    Inferred resource = 4.120 Gt @ 0.71% Cu, 0.24 g/t Au, 1.0 g/t Ag, 0.25 kg/tonne U
3O8,
    Total resource = 10.060 Gt @ 0.78% Cu, 0.30 g/t Au, 1.0 g/t Ag, 0.25 kg/tonne U
3O8.
This resource includes a total proved + probable reserve of:
    484 Mt @ 1.95% Cu, 0.74 g/t Au, 4.0 g/t Ag, 0.59 kg/tonne U
3O8.
    Stockpile - 44 Mt @ 0.99% Cu, 0.51 g/t Au, 2.0 g/t Ag, 0.37 kg/tonne U
3O8.
At 30 June 2015, a separate non-sulphide gold resource was 283 Mt @ 0.84 g/t Au, which was not reported in 2015.

At 30 June 2017, the published resources (BHP Annual Report, 2017) amounted to:
    Measured resource = 1.460 Gt @ 0.96% Cu, 0.41 g/t Au, 2.0 g/t Ag, 0.30 kg/tonne U
3O8,
    Indicated resource = 4.680 Gt @ 0.79% Cu, 0.34 g/t Au, 1.0 g/t Ag, 0.25 kg/tonne U
3O8,
    Inferred resource = 3.920 Gt @ 0.71% Cu, 0.28 g/t Au, 1.0 g/t Ag, 0.24 kg/tonne U
3O8,
    Total resource = 10.100 Gt @ 0.78% Cu, 0.33 g/t Au, 1.0 g/t Ag, 0.25 kg/tonne U
3O8.
This resource includes a total proved + probable reserve of:
    508 Mt @ 1.99% Cu, 0.72 g/t Au, 4.0 g/t Ag, 0.58 kg/tonne U
3O8.
    Low grade Stockpile - 37 Mt @ 1.13% Cu, 0.51 g/t Au, 3.0 g/t Ag, 0.36 kg/tonne U
3O8.

Production in 2011-12 totalled 192 600 tonnes of Cu, 3.66 t Au, 28.21 t Ag, 3885 tonnes U
3O8.
Production in 2014-15 totalled 124 500 tonnes of Cu, 3.26 t Au, 22.52 t Ag, 3144 tonnes U
3O8.

The mine is owned and operated by a subsidiary of BHP Billiton Ltd.

Return to top


Prominent Hill  -  SE of Coober Pedy, Northern South Australia  -  OZ Minerals   ...................... Saturday 23 February, 2013.

The Prominent Hill iron oxide copper-gold (IOCG) deposit is located approximately 150 km north-west of Olympic Dam and 650 km NNW of Adelaide in northern South Australia (#Location: 29° 43' 14"S, 135° 34' 38"E).

Prominent Hill, Carrapateena, Olympic Dam, Moonta-Wallaroo and Hillside, and all of the other significant known IOCG mineralised systems of the Gawler craton, are hosted within Palaeo- to Mesoproterozoic rocks and are distributed along the eastern edge of the currently preserved craton, to define the Olympic IOCG Province.

The Prominent Hill IOCG deposit was discovered through diamond drilling of a gravity anomaly in 2001 (Carter et al., 2003) and was brought into production in 2009.

Cratonic to Domain-scale Setting

See the Gawler Craton and Olympic IOCGU Province record for a summary of the regional, cratonic setting of the Olympic IOCG Province.

Prominent Hill lies on the southern margin of the Mount Woods Domain (MWD), which is located within the Olympic IOCG Province in the northeast of the preserved Archaean to Mesoproterozoic Gawler Craton. The MWD comprises Palaeo- and Mesoproterozoic metamorphic and igneous rocks that have a well defined aeromagnetic signature. It is characterised by high magnetic and gravity signatures, caused by multiple iron-oxide and mafic rock sources, and its boundaries are sharp and structurally controlled. The MWD encloses a major regional ~75 x 50 km magnetic complex with an overall 'U'-shape, elongated in a NW-SE direction and open to the SE. Outcrop is sparse, with flat lying Phanerozoic cover reaching thicknesses of up to 400 m in places, although it is generally <200 m.

The MWD comprises at least two separate sedimentary successions that have been subjected to one or more amphibolite to granulite facies metamorphic events, three periods of deformation, and two (probably three) episodes of magmatism, as well as a pulse of Neoproterozoic mafic dyke intrusion. Nine basement sub-domains have been defined, within the southern half of the domain within a 40 km radius of Prominent Hill.

The core of the southern half of the MWD is occupied by an 'eye-shaped', east-west elongated, 25 x 10 km kernel of magnetically anomalous rocks, reflecting the lopolithic White Hill Igneous Complex, which is characterised by extremely high amplitude magnetic lineaments on its margins, more subtle concentric magnetic zoning in its centre, and a very pronounced and complex gravity signature. The complex (where drilled) comprises pyroxenite, norite and gabbro, with pronounced layering defined by plagioclase and pyroxene-rich layers, with interleaved disseminated to massive magnetite-ilmenite bands. The gabbros and pyroxenites are hydrous, alkaline and enriched in volatile components, and carry up to 8% modal apatite. The complex is divided by a north-south fault into the White Hill and Joe's Dam sub-domains to the east and west respectively, based on differences in the magnetic pattern. The White Hill Complex is not as well developed in the Joe's Dam Sub-domain. Where drilled, the latter comprises a suite of quartzo-feldspathic gneisses with magnetite rich gneiss intercalations, and rare bands of mafic rocks, supporting the interpretation that the White Hill Igneous Complex is not well represented to the west. The magnetite and hematite breccias and replacement bodies of the Joe's Dam sub-domain are hosted by psammitic, pelitic and gneissic metasediments of higher metamorphic grade than those in the marginal Neptune and Blue Duck sub-domains. The voluminous Hiltaba Suite magmatism (Hiltaba granites and mafic to ultramafic White Hill Igneous Complex) in the area are a potential cause of high temperature contact metamorphism of the pelites (Freeman and Tomkinson, 2010).

The lenses-shaped 20 x 5 km Kennedy's Dam Sub-domain forms much of the northern margin of the White Hill and Joe's Dam sub-domains, and is characterised by relatively low magnetic susceptibility enclosing a few moderate to high amplitude, linear magnetic anomalies. Where drilled, it is composed of a sequence of quartz-feldspar-biotite-magnetite gneisses and 'granulites' with very minor amphibolite and calc-silicate units, intruded locally by coarse grained granite and pegmatite.

The Skylark Sub-domain bounds the Kennedy's Dam Sub-domain to the NW, and is characterised by large intrusions with low to moderate magnetic responses, surrounded by narrow aureoles of higher magnetic intensity related to either hornfelsing or magnetite metasomatism. Granite with actinolite±magnetite veins and pyroxenites, norites and diorites dated at 1587±4 Ma (U-Pb; Jagodzinski, 2005) have been encountered in drill holes, intruding a variety of quartz-feldspar-biotite gneisses, all with accessory magnetite. Metasediments away from the intrusions include quartz-rich meta-sandstone with plagioclase, opaque oxide (magnetite and hematite), schistose biotite, fluorite and tourmaline. Samples of cordierite-garnet-bearing pelite and magnetite psammite have maximum depositional ages of ~1750 Ma respectively ( U-Pb zircon; Jagodzinski et al. 2007), and were intruded by the syn-metamorphic Engenina Adamellite (~1691±25 Ma; Finlay 1993; Daly et al. 1998). Geophysical data suggest the domain may be underlain by a continuation of the White Hill Igneous Complex.
Mount Woods Inlier

Tectonic and geophysical setting of iron oxide related mineralisation in the southern Mount Woods Domain (MWD) - a). RTP aeromagnetic image of the southern MWD showing the sub-domains discussed herein. The sub-domains are based on exploration drilling and geophysical data; b). The interpreted sub-domains of the southern MWD and location of prospects discussed. The prospects correspond to magnetic and/or gravity anomalies. Modified after: Freeman and Tomkinson (2010); Schlegel et al. (2018).

The 50 x 5 km Taurus Sub-domain forms the NE margin the Kennedy's Dam Sub-domain, but persists further to the east, delineating the northern margins of the White Hill and then the Blue Duck sub-domains, and the southern margin of the Ware's Peak Sub-domain to the NE. This terrane, characterised by a series of short strike length curvilinear magnetic features by major discontinuities, is interpreted to represent rocks caught up between a major strike-slip shear couple.

The extensive Ware's Peak Sub-domain occupies a large area in the NE of the MWD and is characterised by a few high amplitude, strike continuous, but folded magnetic linears, and by large areas of diffuse magnetic signature suggesting moderately magnetic and eastward deepening younger cover. Drill holes testing prospects encountered a highly variable suite of magnetite, plagioclase and garnet bearing paragneisses (including graphite rich units), as well as feldspathic and quartz-poor to quartz-rich meta-igneous lithologies (including quartz diorite, monzodiorite, syenite, granite and pegmatite). Other lithologies include metasandstone, iron formation, calc-silicate, skarn, dolomite and marble units. Undeformed granite and gabbroic intrusions have also been identified in drilling. Metamorphic grades range from mid-amphibolite to granulite facies.

The curvilinear, lensoid 2 to 6 km wide and >60 km long Blue Duck Sub-domain extends along the southern margin of the Joe's Dam, White Hill, Taurus and Ware's Peak sub-domains. In the west, it forms the southernmost sub-domain of the MWD. It is thickest in the centre, where it is immediately to the north of the Neptune Sub-domain that contains the Prominent Hill deposit near the contact between the two terranes, and thins on either extremity. In the east, its southern margin is marked by the regional ENE-trending Bulgunnia Fault. It is characterised by narrow, medium amplitude magnetic linears which are continuous for several kilometres or more. Drilling at a number of locations (mostly aimed at magnetic targets), has encountered metamorphosed calcsilicate units with associated magnetite, schistose, recrystallised K feldspar-biotite-chlorite-quartz-scapolite clastic metasediments, iron-rich, pelitic carbonate rock, marble, calc-silicate, magnetite-pyroxene-quartz rock and possible meta-evaporites. These rocks have been tentatively correlated with the 1760 to 1740 Ma Wallaroo Group found elsewhere in the Olympic IOCG Province (Freeman and Tomkinson, 2010).

The elongate Neptune Sub-domain forms the southern boundary of the MWD over an interval of ~30 km, where it fringes part of the southern Blue Duck Sub-domain, separated by the major, south vergent, Southern Overthrust. It has an overall 'V' shape, turning on its eastern extremity from an east-west to WSW trend, along the northern side of the regional Bulgunnia Fault. It includes the , which are up to 4.5 km thick (tentatively correlated on lithological grounds with the ~1590 Ma Gawler Range Volcanics) and the Prominent Hill Mine Sequence. Compared to terrains further to the north, it is characterised by relatively low amplitude linear aeromagnetic anomalies and contains a sequence of lower greenschist facies, relatively undeformed, mafic to felsic volcanic rocks (basalt-andesite-dacite-rhyolite), hematite-cemented quartz conglomerate, sandstone, argillite and dolostone. This sequence coarsens southwards from argillaceous and calcareous rocks into coarse grained siliciclastic rocks. The volcanic component in the structural footwall to the Prominent Hill deposit are basaltic to andesitic in composition, commonly porphyritic and amygdaloidal. Several kilometres to the west, felsic volcanic rocks (dacite to rhyolite) become much more voluminous with 'redrock' hematite dusting of alkali feldspar, compared to the predominantly sericite-chlorite-earthy hematite-leucoxene-carbonate alteration within the basalts and andesites of the mine sequence. Fragmental lithologies are intercalated with the coherent footwall volcanic rocks at Prominent Hill, and include agglomerate, felsic tuff or ignimbrite (Belperio et al., 2006) and volcanic clast conglomerate. They are also intercalated with mafic to intermediate volcanic rocks and hematitic, quartz-feldspar conglomerate and interbedded coarse grained sandstone. The east-west-trending Hanging wall Fault at Prominent Hill has been inferred to separate the hematite-stable sedimentary rocks of the copper-gold mineralised host sequence of the Neptune Sub-domain in the south, from a magnetite-stable hanging wall sequence of chloritic pelite and pelitic carbonate rock of the Blue Duck Sub-domain to the north. Proterozoic basement is overlain by 90 to 150 m of flat-lying Permo-Carboniferous sandstone and diamictite and Cretaceous sandstone and black claystone.

The Danae Hill Sub-domain forms the southern margin of the MWD to the southeast of the regional Bulgunnia Fault. It is characterised by a similar magnetic signature to the Neptune Volcanics, with low to moderate amplitude aeromagnetic linears. Drilling has identified a suite of altered, low-grade metamorphosed, sheared and brecciated basalts, with lesser metasediments and acid volcanic rocks, which collectively suggest a bimodal volcanic suite. These volcanics have a markedly different trace element signature similar to that of the Neptune Volcanics and are inferred to be of late Neoarchaean to Palaeoproterozoic in age.

The Christie Domain, is mainly found to the immediate south of the of, but also includes the MWD Neptune/Blue Duck and Danae sub-domains, and is predominantly composed by latest Archaean to earliest Palaeoproterozoic metasedimentary protoliths, metamorphosed in the earliest Palaeoproterozoic at ~2450 Ma during the Sleaford Orogeny to become the Christie Gneiss of the Mulgathing Complex. The MWD and has been overthrust onto the Christies Domain from the NE, with a major north dipping thrust, the Southern Overthrust marking the boundary (Betts et al., 2003).

In summary, the MWD is predominantly composed of ~1760 to ~1740 Ma Palaeoproterozoic meta-sedimentary and meta-volcanic rocks, tentatively correlated with the Wallaro Group seen elsewhere in the Olympic IOCG Province, including banded iron formations (possibly equivalent to the Middleback Range BIFs further to the south near Whyalla). These successions, which may include inliers of older late Neoarchaean to lower Palaeoproterozoic metamorphic rocks, underwent peak metamorphism at ~1736±14 Ma to amphibolite and granulite facies. They are bounded on the southern margin of the domain, across the south-vergent Southern Overthrust, by younger, low- to mid-greenschist facies, ~1590 Gawler Range Volcanics equivalents and intercalated volcanic and sedimentay breccias of the Neptune Sub-domain, hosting the Prominent Hill ore deposit. All of these rocks have been intruded by the ~1691±25 Ma Engenina Adamellite, the extensive Hiltaba Suite 1584±18 Ma Balta Granite and mafic to ultramafic rocks that include the 1562 ±14 Ma (U-Pb zircon; Allen et al., 2016) White Hill Igneous Complex and similar 1587±3 Ma (U-Pb zircon; Jagodzinski, 2005) leucogabbro near Peculiar Knob.

The presence of Hiltaba-aged zircon, interpreted as metamorphic (Holm, OZCHRON), in quartzites and felsic gneisses suggests that metamorphic grade in the MWD at ~1590 to ~1580 Ma was significantly higher than is typical elsewhere in the Gawler Craton during that period. This, in turn, suggests that the MWD was at deeper crustal levels than the adjacent Olympic, Christie and Wilgena Domains.

Regional Alteration and Mineralisation

Two main iron oxide alteration styles are abundant in the southern Mount Woods and northern Christie domains:
Magnetite-dominant alteration which generally comprises repeated episodes of magnetite ±phlogopite and/or magnetite-K feldspar-pyrite ±chalcopyrite ±pyrrhotite ±apatite ±titanite ±monazite which overprint both metasedimentary and volcanic rocks, and occurred both during and after brecciation. These alteration assemblages are locally accompanied by low grade Cu, mainly due to minor associated chalcopyrite (Schlegel et al., 2015).
  Hydrothermal replacement, veins and breccia-fills of (already brecciated) pelitic and calcareous metasediments and gneisses are abundant along the southern and eastern margins of the White Hill Igneous Complex (Freeman and Tomkinson, 2010; Schlegel and Heinrich, 2015). Proximal to the same igneous complex (see images above for location), the metasedimentary rocks are altered to an assemblage that includes magnetite (with minor hematite) ±biotite/phlogopite ±pyrite ±pyrrhotite ±chalcopyrite ±diopside ±actinolite ±talc ±scapolite (Schlegel et al., 2017). A number of large magnetite accumulations with anomalous copper, gold and uranium associated with this alteration are found adjacent to this intrusive complex, and within 10 km to the west in the Joe's Dam sub-domain, often with associated mafic to ultramafic intrusions - see the Manxman - Joes Dam record for a detailed description. These occurrences are interpreted to have developed by contact metamorphism and the release of magmatic-hydrothermal fluid from the White Hill Igneous Complex (Betts et al., 2003; Freeman and Tomkinson, 2010; Schlegel and Heinrich, 2015). On the basis of textural and paragenetic observations (Schlegel and Heinrich, 2015), this regional magnetite-'skarn' alteration and mineralisation may partly pre-date the economic Cu-Au ore formation at Prominent Hill. Further south and distal from the intrusion, weakly magnetite or hematite altered amphibolite facies calcareous and pelitic (meta-) sediments contain abundant pyrite. The fluids involved in this regional alteration may well have resulted from mingling of the mafic to ultramafic, mantle derived igneous complex and felsic gneisses and/or Balta granites of the Joe's Dam sub-domain to initiate exsolution and expulsion of Fe-rich hypersaline (Na-Ca-K) fluids responsible for the regional alteration and mineralisation observed in the southern Mount Woods and northern Christie domains (e.g., Chen et al., 2010; Velasco and Tornos, 2009).
  At the Joe's Dam South East prospect, calcareous beds within a sequence of interbedded limestone-pelite and its brecciated equivalents are pervasively replaced by a magnetite ±pyrite ±quartz assemblage (Betts et al., 2003). This alteration took place in stages, separated by brecciation and renewed replacement of the calcareous breccia matrix by magnetite and pyrite. The prospect lies immediately adjacent to the margin of the White Hill Igneous Complex. Magmatic magnetite banding is found in gabbros on the margin of the igneous complex, whilst miarolitic cavities in gabbro, also on the margins of the intrusion, contain K feldspar-phlogopite-magnetite-quartz ±pyrite ±pyrrhotite. Within the sedimentary wall rock, K feldspar-, quartz- and pyrite-bearing pegmatitic veins cut the deformed interbedded limestone-pelite unit which also contain pyrite in calcareous layers that grade into dominantly magnetite-pyrite ±phlogopite-altered limestone interbedded with pelite. The magnetite alteration grades outward into magnetite-poor but pyrite-rich brecciated calcareous beds within the limestone-pelite sequence (Schlegel et al., 2015; 2017).
Hematite-dominant alteration overprints undeformed albite- and magnetite-K feldspar altered porphyritic to aphyric basaltic andesitic and andesitic extrusives of the 'Neptune Volcanics', interpreted to be equivalents of Gawler Range Volcanics (Carter et al., 2003; Harris et al., 2013) at the Neptune and Triton prospects, 5 to 6 km SE of Prominent Hill. At Triton, these mafic lavas are variously altered to hematite-chlorite-sericite ±quartz ±kaolinite ±fluorite ±apatite ±barite ±leucoxene, surrounding intense hematite-quartz-apatite-barite alteration (Schlegel and Heinrich, 2015). Early crystallised amphibole is replaced by chlorite, and is overgrown by euhedral plagioclase phenocrysts, that in turn, are progressively altered to sericite and chlorite. The transition to the inner hematite-quartz alteration resulted in pseudobrecciation and near total replacement and destruction of mineral textures in the original protolith. Kaolinite is intergrown with sericite and replaces plagioclase crystals or fills volcanic amygdales. Intense hematite-quartz ±apatite ±barite alteration resulted in replacement of feldspars and sericite-kaolinite-filled amygdales, whilst late calcite fills the remaining pores. Local patches of chalcopyrite and minor chalcocite are found in intensely altered autobrecciated intervals between volcanic flows, and in veins containing hematite, euhedral quartz, K feldspar and pyrite. Veins with finely intergrown quartz-hematite-chalcopyrite-pyrite dominate and K feldspar or sericite occur as vein selvages or in the matrix of local breccias. At ~250 m depths, these veins become increasingly brecciated to form a fracture network that hosts Cu mineralised clasts set in a matrix with two generations of chalcopyrite-pyrite that has associated fluorite, barite and dolomite, indicating that mineralisation is related to small, multiple brecciation events. Degassing of volatiles from the lavas at Triton resulted in vesicular flow tops filled with quartz-hematite-magnetite-fluorite-chalcopyrite and late dolomite (Schlegel et al., 2017).
At Neptune, mafic lavas of the 'Neptune Volcanics' are altered to a magnetite ±K feldspar, chlorite ±fluorite ±apatite ±leucoxene ±barite ±carbonate ±pyrite ±chalcopyrite assemblage that are pervasively altered by magnetite-quartz-pyrite-chalcopyrite ±K feldspar ±calcite ±fluorite. Potassic feldspar is commonly reddened by very fine grained hematite. Four main generations of secondary iron oxides are distinguished at Neptune: i). fine granular magnetite, enriched in basaltic protoliths; ii). coarse granular magnetite, mostly associated with late hydrothermal 'mineralisation', some partly converted to hematite; iii). 'fresh', randomly clustered, bladed hematite; and iv). magnetite, partly to completely replacing earlier, randomly clustered, bladed hematite (mushketovite). Broad intervals of strong magnetite alteration contain anomalous to low grade copper mineralisation with minor zones of higher grade restricted to narrow, matrix-supported, magnetite rich hydrothermal breccias.



PROMINENT HILL DEPOSIT

The Prominent Hill deposit was discovered under ~100 m of cover, and is reflected by a discrete gravity anomaly, the target of the discovery drillhole (Carter et al. 2003). This anomaly corresponds to the hydrothermal iron altered (magnetite-deficient) hematite matrix breccias that host the copper-gold-silver-uranium-cerium-lanthanum ore deposit within the Neptune Sub-domain, and to corresponding palaeotopographic highs. The peak of the gravity anomaly coincides with a mass of massive, barren 'steely' hematite-silica flooded volcanics (on the eastern end of the main ore zone), flanked to the west by a ~2 km long mineralised hematite matrix-supported breccia. The overall gravity anomaly has an east pointing "V" form, with a 1 km long northern arm trending WNW-ESE, and the southern 2 km long limb trending WSW-ENE. The southern limb reflects the main mineralised hematite breccia, with the peak of the anomaly near the hinge, and has no magnetic expression (Belperio et al., 2006).

An associated 750 m long magnetic anomaly coincides with the northern limb of the gravity feature. It is centred ~500 m to the north of the orebody, across the Hanging wall Fault, in the Blue Duck Sub-domain (Hart and Freeman 2003), and reflects a package of magnetite-chlorite-tremolite-phlogopite altered metasomatic 'skarn-like' altered calc-silicate/carbonate-rich metamorphic rocks intercalated with highly altered, intermediate porphyritic intrusives and chlorite matrix tectonic breccias (Belperio et al., 2006). This package largely comprises a body of massive magnetite accompanied by phlogopite-chlorite-pyrite ±chalcopyrite ±actinolite-tremolite ±serpentine ±talc ±scapolite, known as the 'magnetite skarn' (Belperio et al., 2007; Freeman and Tomkinson, 2010; Schlegel and Heinrich, 2015).

The deposit is characterised by abundant, largely pre-mineralisation breccias, large volumes of hematite-white mica-carbonate altered rock, variation of the dominant Cu mineral species (native copper/ chalcocite/bornite/chalcopyrite), and a distinctive geochemical association with marked enrichment of F, Ba, LREE and U (Belperio et al., 2007; Williams et al., 2017).

Geology
The Hanging wall Fault is a relatively brittle, sinistral structure that dips at 70 to 80°N in the deposit area, but flattens to 60 to 60° a little further west. It is represented by a chlorite breccia zone (Freeman and Tomkinson, 2010; Schlegel and Heinrich, 2015). To the immediate north of the main Prominent Hill deposit, it closely follows the major, south vergent Southern Overthrust. The latter is a domain boundary separating a mid- to upper-greenschist to locally amphibolite facies sequence of calcsilicate and phyllite to the north in the Blue Duck Sub-domain, correlated with the Palaeoproterozoic Wallaroo Group, from the less metamorphosed volcanosedimentary succession of the Neptune sub-domain to the south. To the west of the main Prominent Hill deposit, the Southern Overthrust diverges sharply northward whilst the Hanging wall Fault continues with an east-west trend. The Neptune sub-domain sequence hosts the Prominent Hill deposit in the footwall of the Hanging wall Fault/Southern Overthrust, within a 200 to 300 m thick, <1.75 Ga sequence of weakly to unmetamorphosed shallow marine grading to fluvial carbonate and siliciclastic sedimentary rocks, including conglomerates and sedimentary breccias. This sequence is overturned, dipping steeply to the north, subparallel to the Hanging wall Fault. The Main Host Sequence is structurally underlain, but stratigraphically overlain, by a younger, ~1.59 Ma sequence dominated by basalt, basaltic andesite and andesite, correlated with the Gawler Range Volcanics and then by a red bed sequence. All of these rocks are cut by two generations of mafic dykes (Freeman and Tomkinson, 2010; Williams et al., 2017).

The succession in the Prominent Hill deposit area is a follows, from oldest to youngest (after Freeman and Tomkinson, 2010 and Schlegel and Heinrich, 2015):
Hanging wall metamorphic sequence above the Southern Overthrust.
• Mostly unbrecciated metasedimentary rocks that include carbonate- and chloritic pelite/phyllite and K feldspar-biotite-chlorite-quartz-scapolite clastic metasedimentary rocks, limestone and dolostone, and inferred former evaporites (Freeman and Tomkinson, 2010). They are intruded by undeformed reddish granitoids, mainly quartz-diorite, tonalite and a felsic K feldspar-phyric porphyry which has fine-grained hematite dusting. The intrusions also include a ~1585 Ma dacite porphyry (Belperio et al., 2007). This sequence, which is interpreted to belong to the 1765±27 to 1741±1 Ma (GeoScience Australia) Wallaroo Group, is the host to the 'magnetite skarn'.
- Southern Overthrust and in part Hanging wall Fault and unconformity
Main Host Sequence in the footwall of the Hanging wall Fault/Southern Overthrust, sandwiched between the hanging wall metamorphic and footwall volcanic sequences. These rocks have a maximum depositional age of ~1750 Ma (detrital zircon U-Pb; Bull et al., 2013). The host-rock package protoliths are provisionally interpreted by Bull et al. (2015) as consistent with deposition as poorly sorted, subwave base, clastic turbiditic, debris flow and hemipelagic sediments, with intercalated carbonate reefs, deposited in a shallow marginal marine grading to continental and perhaps mildly evaporitic environment in a magmatically and tectonically active basin (Schlegel and Heinrich, 2015). The succession comprises:
Shallow marine sequence of interbedded and brecciated, argillaceous dolostone, argillite (breccias), calcareous matrix-bearing and coarse-grained siliciclastic, clast-supported breccias, medium- to fine-grained greywacke, chlorite- and muscovite-cemented subarkose, and laminated and massive limestone and dolostone, as well as quartz-feldspar conglomerate and volcanic-clast conglomerate south of the deposit (Belperio and Freeman, 2004; Belperio et al., 2007; Freeman and Tomkinson, 2010). This suite incorporates the following three units which are locally interbedded within it:
Algal and micritic laminated and massive dolostone with stylolite-like veins filled with chlorite and hematite. It contains brecciated zones rich in hematite and Cu sulphides, and has carbonaceous dolomite and shale near the base of the unit;
Poly- and mono-mictic pebble to cobble breccias and coarse-grained clastic to finely laminated argillaceous rock types, dominantly of sedimentary origin, with lesser lithic sandstone beds. The breccias and coarse clastics comprise hematite-rich greywacke-shale breccia with clasts of sandstone, greywacke, siltstone, chert, hematite and basalt in a matrix of crystalline earthy hematite. Rare clasts of retrogressed gneiss are also encountered. Brecciation is strata bound and mainly single stage (Freeman and Tomkinson, 2010), with little evidence of refracturing of previously consolidated breccia. Variable brecciation intensity formed clast- or matrix-supported breccia sheets. Sharp breccia contacts are evidenced by a sudden change of clast size or type. Brecciation predates the hematite-dominant replacement (Schlegel and Heinrich, 2015). This unit is interpreted to represent subaerial, high-energy, clastic sedimentary deposition on an alluvial to fluvial plain immediately below the unconformity separating the Gawler Range Volcanic equivalents and red beds from the stratigraphically underlying shallow marine sedimentary rock package (Bull et al., 2015).
Andesite with minor dacite, which were probably precursors to the succeeding volcanic sequence;
Fine grained redbed sandstone with minor red mudstone which occurs as an infaulted block, the stratigraphic position of which is unclear;
Strongly metasomatised basalt, again occurring as a fault isolated block whose affinity has not been determined;
- Disconformity or unconformity
Footwall volcanic sequence of the 'Neptune Volcanics' (Freeman and Tomkinson, 2010), interpreted to be equivalent to the Gawler Range Volcanic sequence (Belperio et al., 2007; Freeman and Tomkinson, 2010; Bull et al., 2015; Williams et al., 2017). Reflection seismic data reveal that the volcano-sedimentary sequence has a maximum thickness of around 4.5 km and overlies Archaean rocks of the Mulgathing Complex (Harris et al., 2013) ~7 km south of Prominent Hill in a south-verging fold and thrust duplex system. Whilst at Prominent Hill this sequence is overturned, dipping steeply north, it overlies Archaean basement to the south above a contact with a much shallower northerly dip (Harris et al., 2013), inferring that, apart from it being overturned immediately to the south of the Southern Overthrust, the sequence is otherwise relatively shallow dipping. The volcanic rocks of this sequence have geochemical characteristics similar to the Gawler Range Volcanics from elsewhere in the Gawler Craton, including marked enrichment of the most incompatible elements, along with negative Nb-Ta, Zr-Hf and Ti anomalies. Prominent Hill basalts also show strong similarities with a marginal gabbroic facies of the large 1562±14 Ma White Hill Igneous Complex ~5 km to the NW (Williams et al., 2017). The sequence comprises:
Basalt and basaltic andesite - massive plagioclase porphyritic, amygdaloidal and fragmental facies basalt, basaltic andesite and minor dacite. These coherent footwall volcanic rocks include intercalated fragmental lithologies such as agglomerate, felsic tuff and ignimbrite, and volcanic clast conglomerate (Belperio et al., 2006) that had variably brecciated textures prior to the pervasive hematite replacement and subsequent Cu-(Fe) sulphide mineralisation. The hematite replacement involved extensive alteration to form an assemblage that includes sericite, hematite, chlorite, carbonate and leucoxene altered titanomagnetite.
Felsic volcanic rocks become much more common several kilometres west of Prominent Hill, with dacite to rhyolite compositions and a distinctive reddish colouration due to hematite dusting of alkali feldspar. This contrasts with the predominantly sericite-chlorite-earthy hematite-leucoxene-carbonate alteration of the basalts and andesites in the deposit area.
- Unconformity or fault
Red-bed sequence with interlayered volcanic rocks - coarse to very coarse grained quartz-rich sandstone and conglomerate with graded and cross-bedding and scours, representing high-energy, oxidized clastic sediments deposited in a subaerial setting, probably an alluvial and/or fluvial plain (Bull et al., 2015). The sedimentary sequence is interrupted by interbedded sericite-chlorite altered amygdaloidal basalt, poorly sorted hematite-chlorite-sericite altered volcanic clast conglomerate and hematitic/sericitic volcanic siltstones. Conglomerates and K feldspar sandstones in the upper section of the red beds are hematite cemented with clasts of vein quartz, ironstone, rhyolite and altered basalt (Freeman and Tomkinson, 2010).
Mafic sills and dykes. The hematite-altered sedimentary host rocks are cut by:
• mostly unbrecciated sericite-chlorite-hematite-silica altered basaltic-andesitic, andesitic and dioritic sills and dykes, some of which have chalcopyrite in the sericite-rich matrix and contain sparse amygdules filled with fluorite, barite and siderite. Chilled margins are not abundant;
dolerite dykes that post date mineralisation, cut all hanging wall rocks and have been tentatively equated with the ~820 Ma Gairdner Dolerite dyke swarm (Freeman and Tomkinson, 2010).
- Permian unconformity
Phanerozoic cover sequence (after Freeman and Tomkinson, 2010)
Early Permian Boorthanna Formation - diamictite overlain by rhythmically bedded coarse and fine-grained clastic rocks;
Lower Cretaceous Cadna-owie Formation - sandstone, siltstone, calcareous sandstone, pebbly sandstone and some feldspathic intraformational conglomerate;
Late-Early Cretaceous Bulldog Shale - predominantly grey mudstone.

Alteration and Mineralisation
The formation of both hematite-dominated alteration and economic Cu-(Fe) sulphide mineralisation (or at least some) took place during and after rotation of the brecciated host package. This interpretation is based on geopetal structures in the high-grade mineralised breccia, and further supported by the presence of pre-mineral dykes intruding the overturned sedimentary hosts (Schlegel and Heinrich, 2015; Williams et al., 2017). The following alteration, particularly that related to iron oxide, is observed:

Magnetite skarn developed in the Palaeoproterozoic, probable Wallaroo Group equivalent, metasedimentary rocks of the hanging wall metamorphic sequence. These rocks are altered to a 'skarn' assemblage of massive magnetite with phlogopite-chlorite-pyrite ±chalcopyrite ±actinolite-tremolite ±serpentine ±talc ±scapolite (Freeman and Tomkinson, 2010). Pyrite is abundant, filling fractures and veins within massive magnetite and locally comprising up to 20 vol.% of the 'skarn' assemblage (Belperio and Freeman, 2004), although the Cu grade is typically <0.2%. This assemblage may represent either a single event or be the result of episodic Fe ±K ±Mg alteration, as observed elsewhere in the Mount Woods Domain (e.g., Joe's Dam South East prospect; Schlegel and Heinrich, 2015). In drill core martite (hematite pseudomorphs after magnetite skarn) occurs as zones separated by metre-scale layers of chlorite breccia, granitoid and local fault zones. Magnetite-quartz-calcite-fluorite-barite ±pyrite ±chalcopyrite veins cut all lithologies of the hanging wall metamorphic sequence. Rare calcite-quartz ±hematite ±fluorite ±chalcopyrite veins that have been correlated to the Cu mineralisation in the Main Host Sequence (Belperio et al., 2007), indicating the magnetite skarn predated the hematite-associated economic Cu mineralisation. Rocks composed of the skarn alteration assemblage have been intruded by a dacite porphyry with a crystallisation age of 1586 ±12 Ma (LA-ICP-MS U-Pb dating of zircon; Bowden et al., 2017).

Hematite breccias in the Main Host Sequence are the result of pervasive hematite replacement of host carbonate and pre-existing siliciclastic breccias. This interpretation is supported by the comparison of textures seen in regional, hematite-barren, calcareous sedimentary rocks and those of hematite breccias from Prominent Hill (Schlegel and Heinrich, 2015). Pervasive hematite can be observed to have variably replaced calcareous and dolomitic lithologies. Although in some cases this replacement has progressed to almost complete obliteration of previous textures, in many cases pre-alteration and pre-mineralistion sedimentary textures and structures are partially retained, e.g., layering, brittle fracturing, angular and rounded clast outlines, boudinage and aligned clast fabrics (Schlegel and Heinrich, 2015). Replacement appears to have commonly increased porosity and probably enhanced permeability of the hematite breccias, compared to their protoliths. There is no hydrothermal magnetite associated with the hematite alteration south of the Hanging-wall Fault, with the only magnetic features reflecting post-mineral dykes (Williams et al., 2017).
  The breccias contain a range of clast types, including both fragments of the host rock, as well as red-dusted exotic granitoid clasts. These breccia clasts have a frayed appearance, and in addition to the matrix, may also be partially to totally replaced by hematite. As well as hematite, hydrothermal alteration has produced assemblages including carbonates (siderite, ankerite and dolomite), sericite (phengite), chlorite, fluorite, barite, quartz, fluorapatite, REE minerals (including monazite), uraninite, coffinite and Cu-(Fe) sulphides. Some of these minerals may not be entirely of hydrothermal origin, e.g., chlorite, muscovite and sericite, which are seen to be original constituents of the matrix of unaltered protoliths. Never the less, much of these minerals are formed by hydrothermal alteration and can be seen to be the products of the breakdown of feldspars seen in the unaltered host rocks (Schlegel and Heinrich, 2015). Two end member hematite breccias have been recognised, with transitional varieties developed in brecciated and unbrecciated host rocks. The two hematite breccia types together constitute the Prominent Hill hematite breccia body:
  i). hematite-quartz alteration, which is mostly in brecciated rocks, and is characterised by an assemblage of hematite-quartz ±fluorapatite ±barite ±fluorite ±REE minerals ±gold. This alteration style is referred to as 'steely hematite' by Belperio et al. (2007) and Freeman and Tomkinson (2010) and coincides with the gravity anomaly initially drilled that led to the discovery of the deposit. It occurs as a dense, hard rock that overprints earlier mineralised breccia, barren breccia and volcanic rocks. It comprises extremely fine (<10 µm) hematite intricately mixed with cryptocrystalline silica in altered volcanic rocks, whilst in calcareous siliciclastic protoliths it produced cryptocrystalline silica intergrown with hematite. In zones of more intense pervasive alteration, hematitic jasperoid resulted. It contains pervasively hematised and/or silicified angular cherty clasts. Late-stage veins containing barite and specular hematite cut the breccia. Where hematite-quartz is pervasive, both brecciated and unbrecciated host rocks were variably altered, first causing depletion in elements such as Na, K, Mn, Mg and Al and replacement of chlorite and sericite by kaolinite. During this process and subsequently, feldspar, carbonate, amphibole, muscovite and kaolinite were removed and substituted by hematite and/or quartz. Pre-existing breccia textures were progressively destroyed, as indicated by the 'fraying' and irregularly hematite-quartz embayments eroding clast margins. Other characteristics include: a). euhedral to subhedral quartz and hematite crystals projecting into small breccia cavities; b). dull colour changes in semi-altered clasts, and c). a reduction of porosity (Schlegel and Heinrich, 2015). This reduction in porosity, in contrast to the hematite-quartz alteration in the breccia, is interpreted to be due to the more intense hematite alteration and the major addition of silica which progressively occluded permeability and porosity (Schlegel and Heinrich, 2015).
  These breccias and the transition to the adjacent hematite-chlorite-sericite-altered rocks host the bulk of the Au (+barite) mineralisation, but are generally poor in Cu-(Fe) sulphides. These enhanced gold concentrations are generally found in a zone some 10 to 20 m wide, typically containing 4 to 6 g/t Au, commonly at the outer edge of the hematite-quartz alteration zones, accompanied by abundant hematite and silica in the breccia matrix. Gold grains, vary in size from <5 to >500 µm, and have rims of copper sulphide and complex symplectic textures with both copper and iron oxides.
  ii). hematite-aluminosilicate breccia, containing hematite-chlorite-sericite ±siderite ±ankerite ±kaolinite ±barite ±fluorite ±fluorapatite ±REE minerals [e.g., monazite], uraninite, coffinite ±Cu-sulphide alteration. On the basis of the K/Al ratio in bulk assay data, Schlegel and Heinrich (2015) infer the 'sericite' that is closely associated with the Cu(-Fe) mineralisation is a phengitic muscovite. This 'sericite' has a probable 1585 and 1570 Ma age range (
49Ar/39Ar; Bowden, 2017). These breccias are generally porous and softer than the hematite-quartz breccia and have textures that vary from being finely layered, to massive, with fine-grained to mm- scale crystalline hematite aggregates, meshes or disk-shaped networks. They are typically dark grey to black, although in contrast, the earthy hematite matrix (see below) on the margin of this breccia is generally fine grained, granular and red to brown (Schlegel and Heinrich, 2015). The porosity and permeability of these breccias which may have contributed to their susceptible to increased fluid penetration is interpreted to be the product of inferred carbonate dissolution and widespread hematite replacement which is likely associated with net mass loss of CaO, Na2O, and variable CO2 and Al2O3 to increased fluid penetration over time (Schlegel and Heinrich, 2015).
  Hematite-aluminosilicate breccias are the main host to Cu mineralisation which predominantly occurs within the breccia matrix.
  Cu-(Fe) sulphide minerals that are abundant in the breccia matrix include chalcocite, digenite, bornite, idaite and chalcopyrite. These sulphides are variously intergrown with fine- to coarse-grained hematite, sericite, barite, fluorite, carbonate and locally quartz, or replace euhedral to anhedral pyrite (Belperio et al., 2007; Schlegel, 2010). Cu-(Fe) sulphides also infill voids in earlier hematite-quartz altered breccia where the two styles overlap. High Cu grades associated with chalcocite are typically confined to sections of the breccia matrix containing fine- to coarse-grained crystalline hematite and visible sericite (hematite-sericite matrix breccia; see below). Intense hematite-fluorite-barite alteration (hematite-fluorite matrix breccia; see below) is also locally developed in spatial association with chalcopyrite-pyrite mineralisation, occurring in patches adjacent to hematite-only breccia matrix. Discrete accumulations of fluorite and/or barite are intergrown with hematite and Cu-(Fe) sulphides in these patches. Calcite and siderite accompany the hematite-fluorite-barite assemblage and are generally fine grained, filling matrix interstices or are major constituents of veins cutting the hematite breccia (Schlegel and Heinrich, 2015).
  Some hematite can be seen to occur as pseudomorphs after feldspars in volcanic clasts, whilst Cu-(Fe) sulphide minerals also replace breccia clasts and unbrecciated host rock, although not homogeneously across the entire breccia or host rock unit. For example, small sub-cm sized clasts are commonly completely replaced by chalcocite or chalcopyrite and fluorite, whereas larger clasts are partially corroded, and fracture controlled alteration of unbrecciated hosts produces pseudobreccias. High grade Cu can occur over short intervals as chalcocite- and bornite-rich replacements of unbrecciated host rock. Where replacement mineralisation impinges on hematite-quartz altered breccia, Cu-(Fe) sulphides are intergrown with barite and together replace breccia clasts, whilst the matrix remains poor in Cu sulphides and barite (Schlegel and Heinrich, 2015).
  Variably developed Cu-(Fe) sulphide assemblages, with or without pyrite, are found throughout the Main Host Sequence and upper sections of the footwall volcanic sequence and display complex textures. Those developed in previously hematite-quartz altered breccia usually comprise chalcocite replacing digenite-coated bornite. Rims of Fe-depleted chalcocite and digenite surround bornite relicts in weakly mineralised hematite-quartz altered rocks and in transition zones to hematite-chlorite-sericite altered breccia. However, no other obvious deposit-scale zonation of Cu-(Fe) sulphides or dependence of mineralogy or depth below the palaeoerosion surface has been observed. Paragenetic relationships of mineral precipitation is therefore derived mainly from smaller scale petrographic relationships (Schlegel and Heinrich, 2015). Petrographic observations of the relationships between chalcocite, bornite, chalcopyrite, pyrite and hematite indicate copper, gold, uranium and rare earth elements were introduced contemporaneously with iron oxides. While hematite was introduced in all stages of the system, the relatively rare sulphides are inferred to have developed in the sequence pyrite → chalcopyrite → bornite → idaite → chalcocite (Schlegel and Heinrich, 2015). This progression is consistent with the continued introduction of a Cu bearing oxidised solution to replace Fe in existing sulphides with Cu to advance from pyrite to chalcocite and in doing so, liberate Fe to combine with the excess O to form hematite.
  Hematite-aluminosilicate breccias were divided into two sub-grouping by Belperio et al. (2007) and repeated by subsequent authors, reflecting some of the sulphide-gangue associations detailed above. These have been described as follows by Belperio et al. (2007):
  - Chalcopyrite-uranium or hematite-fluorite matrix breccia, which are characterised by an assemblage of chalcopyrite-gold ±bornite ±uraninite ±fluorite ±pyrite in a strongly developed breccia that has a purple, dark grey to jet black, porous matrix, with rounded clasts of intrusive, volcanic and sedimentary rocks. This variety commonly displays well-preserved compositional layering and contains late barite-quartz-fluorite veining. Grades typically average ~1.4 wt.% Cu and 0.6 g/t Au, whilst the uranium content locally exceeds 0.5%, commonly associated with high concentrations of fluorite in the matrix and late barite veining. Uranium occurs as sporadic, fine, discrete grains of coffinite and uraninite as inclusion within hematite or chalcopyrite. Rare earth elements cerium and lanthanum are more widespread than uranium, occurring as cerium-bearing apatite, cerium- and lanthanum-bearing monazite, bastnaesite, and a variety of rare earth element oxides throughout the broad iron oxide alteration halo. However, local grains of coffinite also occur in distal crackle-veined earthy breccias. Rare earth element concentrations average about 3000 ppm cerium + lanthanum, whilst silver grades average about 3 g/t, but are generally lower than in chalcocite-bornite zones.
  - Chalcocite-bornite or hematite-sericite matrix breccia, which are characterised by an assemblage of chalcocite-gold ±bornite ±covellite ±diginite in a strongly developed breccia that has a bluish-grey, moderately well layered matrix, with sedimentary and/or volcanic clasts that are wispy shaped and sericitised, or rounded and 'rubbly'. These shapes reflect progressive pervasive hematite and/or sericite alteration of coarse clasts of claystone, chert, volcanic rock and sandstone. The matrix comprises platy hematite crystals, granular hematite aggregates, interstitial earthy hematite, and variable quantities of disseminated copper sulphides. Chalcocite and bornite are abundant and relatively fine grained. Grades typically averaging ~2.5 wt.% Cu and 0.6 g/t Au with low to moderate <0.01% U and <400 ppm F compared to the chalcopyrite breccias. Chalcocite is found as both simple grains within the matrix and as complex intergrowths with hematite, whilst bornite occurs as symplectic intergrowths with chalcocite, inferred to suggest coprecipitation. Bornite and chalcocite are also commonly seen to replace earlier formed euhedral pyrite.

Earthy hematite alteration and veining - pervasive earthy and granular hematite alteration/flooding and weak brecciation, together with crackle-veined stockwork veining that is predominantly composed of hematite with lesser carbonates, are developed within argillaceous and dolomitic sedimentary rocks peripheral to copper mineralised breccias. The veins are irregular and up to 10 cm thick and occur as crackle and stockwork arrays with a dominant mineralogy of hematite + carbonate + gold. However, in addition to this base assemblage, other mineral packages define four distinct vein types, which in addition to gold, comprise (Schlegel and Heinrich, 2015):
  i). Specular hematite-Cu-(Fe) sulphides ±quartz;
  ii). hematite-calcite-barite-pyrite ±fluorite ±chalcopyrite ±bornite ±chalcocite ±magnetite;
  iii). hematite-siderite-quartz-fluorite-barite chalcopyrite ±calcite, although a variety without barite and calcite, is also locally abundant; and
  iv). hematite-barite-bornite-chalcocite.
  The same mineral assemblages also fill porous breccia and centimeter-sized cavities in the breccias. In addition, rare paragenetically late fluorite-pyrite-pyrrhotite-magnetite-bearing veins occur locally in the footwall of the Hanging-wall Fault zone. Gold grains within these veins range in size from 5 to 800 µm. Petrological and SEM observations of these gold grains show a persistent association of gold, copper (bornite, chalcocite or chalcopyrite) and hematite, implying a genetic relationship. In particular, gold grains are both rimmed with a copper sulphide, and contain minute copper sulphide inclusions. The rims and inclusions may be either chalcocite or chalcopyrite, and are ubiquitous whether proximal or distal to the high grade copper zones (Schlegel and Heinrich, 2015; Belperio et al., 2007).

A well developed alteration succession can be seen in the volcanic rocks of the Footwall Volcanic Sequence in the structural footwall of the deposit. These rocks were albitised before ore formation. Albite was sequentially overprinted by chlorite, Fe-Mg bearing illite, hematite and sulphides+carbonates. The white mica-hematite alteration intensity increases unevenly towards the orebody, controlled by variations such as the primary porosity, stratigraphic contacts and fracturing. Much of the hematite formed directly as microspecularite with no precursor magnetite. Hematite is commonly associated with minor minerals such as apatite, barite and REE minerals (mainly Ca-REE fluorocarbonates), florencite and REE-only fluorocarbonates that are found in the orebody (Williams et al., 2017). The same authors conclude that the distribution of ore and ore-related alteration at Prominent Hill suggests that fluid flow during mineralisation was strongly influenced by the major discontinuity between the stratigraphic base of the volcanic sequence and the Main Host Sequence.

Prominent Hill Geology

Simplified geological map of the Prominent Hill deposit area below the 90 to 150 m thick Phanerozoic cover overlying a Permian unconformity, and is based on drilling. The main copper-gold bearing clastic and shelf carbonate sequence is located between metamorphic calcsilicate and metasomatic skarn altered rocks to the north, and unmetamorphosed but strongly altered, volcanic rocks to the south. The main copper-gold ore is hosted by the hematite altered polymictic breccias, while the hematite quartz breccias contain variable gold. The location of the principal resource blocks (Main Prominent Hill Cu-Au, Eastern Cu-Au, Western Au and Western Cu) which lie within these breccias are indicated. Modified after: Williams et al. (2017) and Freeman and Tomkinson (2010).


Economic Cu mineralisation at Prominent Hill was introduced comparatively late in the mineral paragenesis (Freeman and Tomkinson, 2010), and comprises relatively abundant Cu sulphides in an oxidised, otherwise low sulphur system. Hematite-dominant alteration continued throughout all of the stages of mineralisation, as evidenced by multiple hematite overgrowths and encrustations. Within the matrix of hematite breccias, early pyrite occurs as euhedral to subhedral crystals, or is intergrown with hematite to form anhedral aggregates (Schlegel et al., 2017). This implies at least two generations of pyrite were deposited, ± weak chalcopyrite, apparently predating much of the Au mineralisation, which in turn, was temporally associated with hematite-quartz alteration and late barite-bearing veins. The Au and barite were succeeded by late hematite-aluminosilicate alteration of brecciated/permeable rocks accompanied by Cu mineralisation that included chalcopyrite [CuFeS
2], bornite [Cu5FeS4], idaite [Cu5FeS6], digenite [Cu9S5] and chalcocite [Cu2S] accompanied by barite, with chalcopyrite seen to replace the early pyrite (Belperio et al., 2007; Schlegel, 2010). Bornite coexists with chalcocite and chalcopyrite, but chalcocite and chalcopyrite are not observed together (Belperio et al., 2007). Mineralisation appears to have evolved with the progressive addition of Cu from an early low Cu:S ratio pyrite-chalcopyrite with accompanying hematite to a high Cu:S suite including chalcocite, also with hematite, as recorded by mutually overprinting generations of Cu-(Fe) sulphide assemblages (Schlegel and Heinrich, 2015). This progression is observed in particular in hypogene sediment hosted copper deposits (e.g., the Kupferschiefer ores in Poland; Oszczepalski, 1999). The reaction is chalcopyrite → bornite: 2 CuFeS2 + 3 Cu+ + e  ↔  Cu5FeS4 + Fe2+; and bornite → chalcocite: Cu5FeS4 + 3 Cu+ + e  ↔  4 Cu2S + 4 Fe2+ (e.g., Macleod and Muir, 1983). Zhao et al. (2014) showed the chalcopyrite to bornite reaction increases in efficiency over 200°C, and in detail, can be achieved by reactions such as 2 CuFeS2 + 3 Cu(HS)2- + 3 OH-  ↔  Cu5FeS4 + Fe(OH)2 + 6 HS- + 0.5 H2O. At lower temperatures (e.g., in porphyry Cu supergene blankets, with continued addition of Cu, coatings and direct replacement of pyrite and chalcopyrite by chalcocite is common, with other secondary Cu-(Fe) sulphide by-products, without increasing S content.

Petrographic observations of the relationships between these sulphides, other minerals and hematite indicate Cu, Au, U and REE were emplaced contemporaneously with iron oxides (Belperio et al., 2007). Oriented drill core containing geopetal markers show economic Cu sulphide mineralisation was deposited during and after the brecciated host strata had been rotated to a steeply dipping attitude, close to the current geometry. This and probable 1585 and 1570 Ma age range (
49Ar/39Ar; Bowden, 2017) of phengitic muscovite that accompanies economic Cu mineralisation, suggest that the latter occurred after, or late in, the extrusion of the inferred ~1590 Ma lower Gawler Range Volcanic equivalents of the Footwall volcanic sequence (Belperio et al., 2007). Also, the absence of significant Cu mineralisation in the 'magnetite skarn' in the Hanging wall metamorphic sequence, other than regional subeconomic pyrite-(chalcopyrite), suggest it was tectonically juxtaposed after the main stage economic Cu mineralisation at Prominent Hill (Schlegel et al., 2018).

Introduction of Sulphides - On the basis of the observations outlined above, sulphides are interpreted to have been introduced in two stages (Schlegel et al., 2017):
Stage I, which is characterised by pyrite and minor chalcopyrite in magnetite-altered metasedimentary rocks, part of a pre-ore magmatic hydrothermal sulphide phase responsible for regional magnetite-sulphide alteration and barren to low grade iron oxide accumulations. Deposition of these sulphides was in response to the host rocks interacting with multiple magmatic-hydrothermal fluid pulses that had evolved along a moderately reduced reaction path (Schlegel et al., 2017). Such mineralisation is found throughout the Olympic IOCG Province and Mount Woods Domain, and includes the 'magnetite skarn' above the Hanging-wall Fault at Prominent Hill which has a mineralogy that includes phlogopite + chlorite + pyrite + chalcopyrite + actinolite-tremolite + serpentine + talc + scapolite. At least two early pyrite generations within the matrix of hematite (rather than magnetite) breccias at Prominent Hill, as described above, can be shown to texturally predate high grade Cu mineralisation, and are interpreted to represent this stage I (Schlegel et al., 2017).
Stage II - petrographic evidence supports Stage I being followed by a late, magmatic derived, oxidised sulphide phase involving multiple pulses of fluid that had first interacted with the oxidised surface environment. Examples of stage II sulphides are observed to have formed by the reaction of stage I pyrite with Cu-bearing fluids to produce Cu sulphides. Petrographic evidence from ore textures, distribution of sulphides and barite and sulphur isotope data are interpreted (Schlegel et al., 2017) to indicate sulphide stage II mineralisation was caused by a combination of two end-member processes, but also a third where sulphides form directly with hematite, namely:
  i). magmatic sulphur disproportionation* followed by reduction of magmatic sulphate and precipitation of Cu-(Fe) sulphides. Disproportionation of magmatic sulphur resulted from the mixing of oxygen-rich meteoric waters and acid magmatic hydrothermal fluid at or near the surface:
4 SO2 + 4 H2O + 2 O2  ↔  4 HSO4- + 4 H+
This reaction produced sulphuric acid (accompanied by hydrofluoric acid generated from the abundant F within the same fluids) which leached Cu from the enclosing volcanic rocks. The Cu and acid magmatic sulphate were subsequently co-transported to the deposit site where the latter was neutralised by reaction with a reductant containing Fe
2+ present within, or advected into, the host rock package, as follows:
HSO4- + 8 Fe2+ + 8 H2O  ↔  4 Fe2O3 + H2S + 15 H+.
This neutralisation of acidity led to the release of disolved Cu that combined with available reduced S in H
2S to precipitate Cu-(Fe) sulphides;
  ii). isovolumetric replacement of stage I precursor pyrite by Cu-rich sulphides during sulphide stage II. This involves the replacement of previously precipitated magmatic-hydrothermal pyrite by Cu-rich sulphides, with incomplete isotopic equilibration between pre-existing and newly formed sulphides during reaction with an oxidised fluid containing abundant Cu. In the process, Fe
2+ is expelled as a by-product, as follows:
14 Cu2+ + 5 FeS2 + 12 H2O  ↔  7 Cu2S + 5 Fe2+ + 3 HSO4- + 21 H+.
Note that this simplified equation is shown to generate chalcocite direct, although observation indicates a progression through chalcopyrite and bornite as detailed previously may have occurred also.
  iii). direct formation of hematite and sulphides from a fluid with Cu, limited sulphur as reduced aqueous sulphide, in the presence of high total Fe, in the same fluid, a second fluid or host rock, to form hematite and chalcopyrite:
Cu2+ + 2 HSO4- + 9 Fe2+ + 4 H2O  ↔  4 Fe2O3 + CuFeS2 + 8 H+.
This process is similar to that in Stage I where the fluid has limited S and Cu to produce weak pyrite-chalcopyrite with hematite/magnetite mineralisation. The balance between hematite and magnetite is governed by the equilibrium between the following two reactions
3 H2O + 2 Fe2+  ↔  Fe2O3 + H2 + 4 H+   and   3 Fe2O3 + H2  ↔  2 Fe3O4 + H2O.
This is influenced by the amount of H
2 in the fluids and sinks for H+ in acid consuming alteration (Schlegel et al., 2018).
  Stage II Cu sulphides, the deposition of which postdated, or overlapped, but outlasted the stage I magnetite- (or hematite)-associated sulphide, are responsible for the bulk of economic mineralisation at Prominent Hill (Schlegel et al., 2017). Stage II mineralisation also postdates the onset of the extrusion of the mafic to intermediate lower Gawler Range Volcanics (Carter et al., 2003; Belperio et al., 2007; Harris et al., 2013) as these rocks are mineralised in the Prominent Hill area.
* NOTE: Disproportionation is a reaction in which a substance is simultaneously oxidised and reduced, giving two different products.

Fluid Inclusions - Applying petrography, microthermometry, and LA-ICPMS microanalysis, Schlegel et al. (2018) were able to characterise pre-, syn- and post-mineral fluid inclusion assemblages and discriminate four fluid end members, as follows:
Fluid A, which is the main Stage II ore fluid, occurs in fluorite and barite that are intergrown with Cu sulphides in hematite breccia matrix. It is weakly saline (≤10 wt.% NaCl
equiv.) and contains low concentrations of K, Pb, Cs and Fe (600 ppm), but is rich in Cu (~1000 ppm) and U (0.5 to 40 ppm). Its low molar Br/Cl ratio of 0.003 is typical of magmatic fluids, acidic volcanic lake water and evaporated bittern brines, whilst its low Ca and comparatively high K contents, suggests a magmatic-derived origin of the salinity in the inclusion. The Cu and U content are consistent with a fluid that is highly acidic and highly oxidised (e.g., Bastrakov et al., 2010). Its high Al content is also consistent with a highly acidic fluid and the large-scale Al leaching in the core of the Prominent Hill alteration system (Schlegel and Heinrich, 2015). Schlegel et al. (2018) argue the source of this fluid could not have been a playa lake, because such a surface brine would not have been acidic enough to produce the intense hydrothermal alteration, Al leaching and mineral zonation it is interpreted to have produced at Prominent Hill. Schlegel et al. (2018) therefore suggest the solute inventory of the fluid was of magmatic origin, derived through shallow fluid exsolution and degassing of late Gawler Range Volcanics, which were disolved in meteoric water that became enriched in magmatic components. This was followed by complete oxidation of magmatic sulphur via atmospheric oxygen in a volcanic lake environment. The cooling and oxidation of magmatic SO2 in water produced sulphuric acid which aggressively leached Cu and U from eruption rubble in the vent, subaerial lavas and wall rocks of lakes and rivers (Christenson and Wood, 1993). The fluorine-rich nature of the Gawler Range Volcanics magmas (Agangi et al., 2012), suggest the effusive volcanism probably also released HF in gaseous or readily leachable form which would have further contributed to the fluids ability to leach metals. The low Ca concentration of fluid A allowed efficient fluorine transport that eventually became enriched in the deposit by interaction with more Ca-rich brines or host rocks. This fluid is interpreted to have then migrated through oxidised aquifers to the site of the Prominent Hill deposit, where it became the main driver of Stage II copper mineralisation (Schlegel et al., 2018).
Fluid B is found in inclusions hosted by siderite-quartz-fluorite-chalcopyrite and barite-chalcopyrite bearing veins that crosscut the Prominent Hill hematite breccia. Similar fluid inclusion assemblages occur in barren magnetite-quartz veins cutting the weakly mineralised 'magnetite skarn' above the Hanging-wall Fault. It is dominated by NaCl and is hypersaline, the most saline of the four fluids, with a total NaCl+CaCl
2 concentration of 36 to 45 wt.% and a low Ca/Na mass ratio of 0.3. It also has the highest concentrations of K, Fe, Mn, Pb and Cs and contains ~70 ppm Cu with a composition that is typical of a moderately reduced magmatic-hydrothermal brine modified by fluid-rock interaction (Audétat et al., 1998, 2008; Ulrich et al., 2001; Samson et al., 2008; Kouzmanov and Pokrovski, 2012). The fluid-rock interaction is interpreted to have involved quartz-feldspar±carbonate bearing rocks, which increased the Ca/Na ratios in the fluid to a moderate degree (Dolejs and Wagner, 2008; Hennings et al., 2017) compared to pristine magmatic fluids. The high temperature of origin of the fluid inclusion assemblage imply that magmatism was active during the formation of the deposit. Schlegel et al. (2018) conclude that the solute components in fluids A and B were both ultimately sourced from magmas with similar composition, but the two are distinct fluids that have evolved along different fluid-flow pathways in the system.
  Very similar fluid inclusion assemblages are found in barren magnetite-quartz veins cutting the weakly mineralised magnetite-'skarn' like alteration assemblage in the Hanging wall metamorphic sequence and in the Joe's Dam sub-domain 10 to 12 km to the NW (see images above for location). Although these fluids cannot be temporally linked across the Hanging-wall Fault, neither has produced economic mineralisation and both are tentatively linked as a regional Fluid B. Albite, magnetite and hematite replacement of feldspar and carbonate-rich rocks at Joe's Dam and Joe's Dam South East (Freeman and Tomkinson, 2010) in the vicinity of the fluid-saturating 1562 ±14 Ma (U-Pb zircon; Allen et al., 2016) White Hill Igneous Complex supports a magmatic source of the high temperature Fluid B, modified by exchange of Na for Ca. This interpretation is further supported by the very similar sulphur isotope signature of pyrrhotite and chalcopyrite from magnetite-bearing miarolitic cavities in the marginal gabbro of the intrusion to those of Fluid B, and the presence of magnetite bands in the same gabbro (Schlegel et al., 2017). This implies that late Hiltaba age mafic to ultramafic intrusives may be the source of Fluid B, possibly exsolved and expelled due to mingling with Balta age granites or felsic gneiss country rocks as described above in the Regional Alteration and Mineralisation section.
Fluid C occurs as inclusions in fluorite and barite within bornite-chalcocite bearing hematite-aluminosilicate breccia matrix ores. It is a CaCl
2-bearing and NaCl dominated calcic-sodic brine with an intermediate salinity of 16 to 28 wt.% NaCl+CaCl2, an elevated Ca/Na ratio of ~0.6 and high Br/Cl ratios, characteristic of basin brines of residual bittern origin. It carries less Fe than fluid B, but contains ~200 ppm Cu, and likely contributed metals to economic mineralisation. Schlegel et al. (2018) note that the Pb/Cl ratios are similar to those in metal rich basinal brines (Stoffell et al., 2008; Fusswinkel et al., 2013; Wilkinson, 2013; Wagner et al., 2016), supported by the ranges in Ca/K and K/Na mass ratios. Fluid inclusion assemblages similar to fluid C closely overlap data from red bed brines, interpreted to be modified sediment hosted Cu ore fluids (e.g., Kupferschiefer; Fusswinkel et al., 2014). In addition, fluid C data overlap with metalliferous oil field brines from the central Mississippi basin. A component of magmatic salinity is possible in addition to contributions from sedimentary rocks or bittern brines. Fluid inclusion assemblages that approximate end-member fluid C contain ~500 ppm S, which is typical of the sulphate content of basin brines with 30 wt.% total salinity (Hanor, 1994). However, sulphur isotope data provides no evidence of a major sulphate contributions from a sedimentary-evaporitic source, but are readily explained by partial inheritance of S from preexisting pyrite in the host rock sequence (Schlegel et al., 2017).
Fluid D is hosted by inclusions in fluorite of late calcite-barite-pyrite-fluorite veins of the ore stage crosscutting the hematite breccia. It is a Ca-dominated and Na-bearing brine with a total salinity range of between 19 and 30 wt.% NaCl+CaCl
2, whilst the concentrations of K, Mn, Cs and Pb are similar to those of fluid C. Fluid inclusions that are predominantly composed of fluids C or D have a continuum of Ca/Na ratio, but fairly constant and distinct Cs/Cl and Pb/Cl ratios. The fluid D Ca/Na ratio of is much higher than in typical basin brines. It is interpreted to be a basement brine with characteristically high Ca/Na ratios of ~2, and averages ~100 ppm Cu. This fluid appears to play no significant role in economic Cu-Au mineralization, as petrographic evidence show that it typically postdates sulphide precipitation in the breccia matrix, although it may have been significant during Cu remobilisation (Schlegel et al., 2018).

Sulphur Isotopes - Schlegel et al. (2017) showed that sulphides from the Prominent Hill deposit and nearby prospects in the surrounding Mount Woods Domain have a wide range in δ
34SV-CDT values of between -33.5 and 29.9‰ for Cu-(Fe) sulphides, and a narrower range of 4.3 to 15.8‰ for barite. The Fe sulphides pyrite and pyrrhotite have a narrower range of sulphur isotope compositions, whereas Cu-bearing sulphides, bornite, chalcocite, digenite and idaite on average, have a much wider variation, and more negative δ34SV-CDT values of between -16.2 and -4.6‰.
  This wide spread has been interpreted in terms of diverse sulphur sources that include contributions from magmatic, sedimentary, seawater or evaporitic sulphur. In order to test these alternatives, Schlegel et al. (2017) performed a detailed sulphur isotope study of Cu-(Fe) sulphides from Prominent Hill and IOCG prospects (e.g., Joe's Dam) within a 30 km radius which had been influenced by similar regional fluids, particularly Fluid B as described above. This study concluded that the diversity in sulphur isotope composition can be produced by different fluid evolution pathways along reducing or oxidising trajectories, but ultimately derived from a magmatic source that had a δ
34SBulk composition of 4.4 ±2‰. This value approximates the magmatic sulphur isotope value determined from pyrrhotite of a Hiltaba Suite-age gabbro in the Mount Woods domain (Bastrakov et al., 2007) similar to that that appears to be the source fluid for mineralisation at Joe's Dam as detailed above (Schlegel et al., 2018). A reduced pathway is indicated for the Stage I sulphide mineralisation related to Fluid B, when intrusion-derived magmatic-hydrothermal fluids produced early pyrite and minor chalcopyrite at Prominent Hill, and iron ±copper sulphides in regional magnetite 'skarns' and in some pervasively altered volcanic rocks of the Gawler Range Volcanics. An oxidised regime was interpreted from related reduced magmatic-hydrothermal fluids vented to the surface, completely oxidised by reaction with atmospheric oxygen to produce sulphate and sulphuric acid with a sulphur isotope composition equal to their magmatic source. These were mixed with oxidised water from the hydrosphere and returned to depth, but contained magmatic solute components, notably sulphate to mix with reduced fluids at depth and react with Stage I sulphide to produce the Stage II mineralisation. Schlegel et al. (2017) argue that their modelling of the sulphur isotope fractionation processes in response to reducing and oxidising pathways demonstrates the entire spectrum of sulphur isotope data from Stage I and Stage II mineralisation can be explained with a single, ultimately magmatic sulphur source. However, some of the early Stage I (or pre-Stage I) pyrite in the host sequence is of sedimentary origin, diagenetic, or partly reworked by early sedimentary brecciation (Allen et al., 2016).

Fluid Mixing and Wallrock Reaction - Schlegel et al. (2018) conclude economic Cu-Au mineralisation at Prominent Hill is the consequence of concurrent fluid mixing and fluid-rock reaction. Mixing of fluids A, B and C is interpreted to have dominated the deposition of hematite, low-sulphidation and low total sulphide Cu-(Fe) mineralisation in the Prominent Hill high-grade orebody, and the main gangue minerals, including fluorite and barite. The same authors interpret fluid A to be the main ore fluid contributing the bulk of the Cu, the relatively small amount of U at Prominent Hill, and oxidised sulphur as sulphuric acid. Fluid B is inferred to have contributed limited sulphur as reduced aqueous sulphide, as well as a high fraction of the total Fe that caused iron oxide deposition. Fluid C contributed some Cu, particularly in peripheral zones with lower ore grades. This fluid-mixing scenario involves three main reservoirs of dominant ore-forming components by precipitation reactions of ore minerals that additionally depend on fluid-rock reactions for acid-neutralising host-rock strata. At the Prominent Hill deposit, the highest copper grades are found at the transition between the most intense hematite-quartz alteration front (Al removal) and hematite-chlorite-sericite altered zones. In these zones, fluid A was neutralised and reduced by reaction with carbonates, aluminosilicates and the Fe
2+ bearing fluids B and C (and possibly also Fe2+ bearing minerals, e.g., chlorite).

Ore Deposit Formation - The following timing and processes in the development of mineralisation and ore at Prominent Hill are proposed, modified after Schlegel et al. (2018):
Deposition of the Main Host Sequence after ~1750 Ma (possibly nearer 1600 Ma) in an extensional setting, including precursors to the main Gawler Range Volcanic equivalents late in the sequence. This succession unconformably overlies the Mount Woods Domain sedimentary suite, which is interpreted to be equivalent to the 1765 ±27 to 1741 ±1 Ma the Wallaroo Group. The latter was intruded by the ~1691±25 Ma Engenina Adamellite;
Deposition of the Gawler Range Volcanics equivalents ('Neptune Volcanics') and coeval intrusion of the anorogenic Hiltaba equivalent 1584 ±18 Ma Balta Granites and crust contaminated mantle related 1562 ±14 Ma (U-Pb zircon; Allen et al., 2016) White Hill Igneous Complex and similar 1587±3 Ma (U-Pb zircon; Jagodzinski, 2005) leucogabbro near Peculiar Knob. The underlying mantle lithosphere probably had retained fertility from subduction during the 1760 to 1739 Ma Kimban Orogeny when the Gawler Craton and Curnamona Province were amalgamated. The 'Hiltaba age' igneous activity was accompanied by south vergent reverse faulting along structures that were precursors of the Hanging-wall Fault and Southern Overthrust. The resultant uplift to the north led to the deposition of coarse clastics along the fault front. This compressional event was probably the result of transpression and led to basin inversion, and tilting to near vertical of the sequence immediately to the south of the fault. Fluid B was expelled by the mafic to ultramafic White Hill Igneous Complex, possibly the result of mingling with basement felsic gneisses, Engenina Adamellite or Balta granites. This hypersaline fluid, with a high fraction of total Fe
2+, but limited sulphur as reduced aqueous sulphide, led to the development of Stage I regional iron oxide-alkali (sodic and potassic) alteration, magnetite>pyrite ±weak chalcopyrite mineralisation, and large disseminated to massive magnetite ±pyrite bodies (e.g., Manxman and Joe's Dam).
Economic mineralisation developed during the late stages in the extrusion and deposition of the Gawler Range Volcanics. Mineralisation at Prominent Hill has been dated between ~1585 and 1570 Ma (
49Ar/39Ar phengitic muscovite associated with mineralisation; Bowden, 2017). Late volcanism produced comparatively water-poor but hot magmas that released metal-, SO2-, F- and volatile-rich volcanic gases, vapours and fluids into the oxidising environment close to the surface as shallow-venting to subaerial volcanic discharges. These emissions mixed with oxygen-rich meteoric water, most likely in an acidic volcanic lake environment. Such strongly acid (sulphuric and hydrofluoric) fluid is envisaged to have aggressively leached Cu and U from unconsolidated porous tuffs, eruption rubble in the vent, subaerial brecciated and vughy lavas and wall rocks of lakes and rivers (Christenson and Wood, 1993) to form Fluid A. This heavy, cooling, metal-rich, acidic and oxidised, but relatively low salinity Fluid A is envisaged as having migrated downward due to brine reflux, traversing oxidised aquifers, and continuing to leach metals. Fluid circulation is also interpreted to have in part been been driven by topography (Schlegel et al., 2018). These aquifers traversed were presumably porous ignimbrites and tuffs and structures within the Gawler Range Volcanics, as well as the coarse oxidised red-bed units near the base of the volcanic pile, and the coarse clastic rocks below the unconformable base of the volcanic sequence (Bull et al., 2015).
  To source the amount of Cu in a resource of 280 Mt @ 1% Cu, i.e., 2.8 Mt of Cu, from rhyolitic and basaltic Gawler Range Volcanics containing ~50 and ~100 ppm Cu respectively, averaging 75 ppm Cu, it would be necessary to completely leach an ~13.5 km
3 volume of aquifer (e.g., a large ignimbrite sheet such as the 30 km3 in New Zealand) and efficiently focus the flow of pregnant fluid to and through the Prominent Hill deposit site. To account for loss and surrounding low grade envelopes, etc., a larger volume would need to be leached.
  It is suggested that as Fluid A sank further below the surface, its temperature was elevated by heat from underlying igneous activity, thus reducing its density, and promoting upward flow, preferentially via the steep overturned limb of the calcareous Prominent Hill Main Host Sequence which had a permeability structure facilitating efficient fluid infiltration. In this limb, it encountered similarly upward percolating Fluid B which continued to emanate from the White Hill Igneous Complex or similar underlying deeper intrusions, as well as Fluid C resident in pores within the sequence. This resulted in Stage II mineralisation reactions (see the 'Introduction of Sulphides' section above) between the Cu
2+ and HSO4- carried by Fluid A;  Fe2+ in Fluid B; and  the carbonates of the Main Host Sequence wallrocks to precipitate bornite and hematite via sulphate reduction, as follows (Schlegel et al., 2018):
5 Cu2+ + 4 HSO4- + 37 Fe2+ + 40 CaCO3  →  2 Cu5FeS4 + 18 Fe2O3 + 40 Ca2+ + 40 CO2 + 2 H2O.
Comparable reactions created chalcopyrite and chalcocite, also accompanied by hematite deposition. Similarly the second Stage II reaction, pyrite replacement, occurred as a result of reaction between Cu in Fluid A, and pyrite and carbonate in the host rock to precipitate chalcocite and hematite (and bornite similarly), as follows (Schlegel et al., 2018):
28 Cu2+ + 10 Fe2+ + 21 CaCO3 + 3 H2O  →  14 Cu2S + 10 Fe2+ + 6 HSO4- + 21 Ca2+ + 21 CO2.
Limited studies undertaken in sections of the deposit suggest that precipitation of Cu sulphides via pyrite replacement, dominates over that from sulphate reduction (Schlegel et al., 2018).
  The reactions between Fluids A and B within each of the two equations in the paragraph above involve the generation of significant H
+ in the first part of the reaction (e.g., in the sulphate reduction equation):
5 Cu2+ + 4 HSO4- + 37 Fe2+ + 38 H2O  →  Cu5FeS4 + 18 Fe2O3 + 80 H+.
This H
+ is then neutralised by the reaction in the second part of the amalgamated equation which 'decalcifies' the host sequence carbonates and provides space for the deposition of Cu-(Fe) sulphides and hematite from sulphate reduction equation above, i.e.,
2 H+ + CaCO3  →  Ca2+ + CO2 + H2O.
The excess Ca
2+ is released to the mixed fluids or combines with the F in Fluid A to precipitate fluorite. The acid neutralisation process leads to replacement of the abundant carbonates by hematite while precipitating Cu-(Fe) sulphides. The molar volumes of the CaCO3 removed and Fe2O3 deposited in its place are similar, and hence the reaction does not occlude porosity or (presumably) permeability, but may allow the focusing of fluid flow and sulphide precipitation, thus further facilitating the alteration reaction. Given that HSO4- occurs on opposite sides of the coeval Stage II sulphate reduction and pyrite replacement reaction equations above respectively, little additional acid is required to replace large amounts of carbonate by hematite, and the excess acidity in Fluid A is available to replace further carbonates and feldspars and subsequently other aluminosilicates (e.g., micas), thereby continuing to enhance porosity and permeability while still precipitating hematite (Schlegel et al., 2018).
  When the reactive carbonate has been exhausted in the host, or volcanic and/or alumino-silicate containing clastic host rocks dominate, the H
+ generated by the continuing reaction of Fluids A and B creating Cu-(Fe) sulphide-hematite is neutralised by the alteration of alkali feldspars (e.g., K feldspar) to phyllosilicates (e.g., muscovite) by reactions such as:
3 KAlSi3O8 + 2 H+  →  KAl3Si3O10(OH)2 + 6 SiO2 + 2 K+.
As this process continues, aluminosilicate destruction progresses towards the hematite-quartz front to generate kaolinite from muscovite:
2 KAl3Si3O10(OH)2 + 2 H+ + 3 H2O  →  3 Al2Si2O5(OH)4 + 2 K+
and then progresses to release silica and remove Al from kaolinite and combine with the co-precipitated hematite that continues to accumulate and produce, in some instances, almost complete replacement of the host by 'steely' hematite-quartz alteration assemblage:
Al2Si2O5(OH)4 + 6 H+  →  2 SiO2 + 2 Al3+ + 5 H2O.

  The 'steely' hematite-quartz alteration zone at Prominent Hill represents the most intense hematite alteration in the mineralised system, reflecting the maximum flux of reacting Fluids A and B, and the locus of the most complete alteration of host rocks. This implies it marks the source direction from which the fluids emanated. The boundary between the strongly oxidised intense hematite-quartz ±barite alteration and the more reduced hematite-aluminosilicate alteration marks an advancing redox front, where the oxidised and extremely acidic ore fluid became reduced and neutralised by ferrous iron from magmatic-hydrothermal or ambient basement fluids and by reaction with chlorite- and carbonate-rich host rocks and formation waters contained within them. Copper is strongly soluble in hot, oxidised (low Eh) and acid (low pH) fluids, and consequently remained in solution in the 'steely' hematite-quartz zone, but was precipitated on passing the redox front into the hematite-aluminosilicate zone where higher Eh and pH conditions prevailed. Cu is virtually absent within the 'steely' hematite-quartz zone, while the highest grade Cu is found in the hematite-aluminosilicate zone adjacent to the redox front where chalcocite is the dominant Cu sulphide. The Cu remaining in the outflowing fluid that had progressively increasing Eh and pH values was precipitated at progressively lower grades and lower Cu:S ratios (i.e., chalcocite → bornite → chalcopyrite-pyrite), to an outer zone of earthy hematite with sulphide veining. This outward decrease in Cu tenor corresponded to a decrease in alteration intensity from kaolin → mica → mica-feldspar → feldspar-mica. As mineralisation progresses, so does the 'steely' hematite-quartz to hematite-aluminosilicate redox front, with Cu being re-disolved from behind and overprinting and reinforcing the grade ahead of the front, as well as the width of the mineralised zone increasing outward from the front. Gold, with differing solubility properties is deposited on the 'steely' hematite-quartz side of the redox front. The location of the deposit was strongly dependent upon a confining corridor of permeable and porous, reactive host rock, namely a pre-existing, carbonate rich sedimentary breccia, into which the fluids could be focused.

Production, Ore Reserves and Mineral Resources

Global reserves and resources at the deposit as of May 2010 were estimated to be:
    278.8 Mt @ 0.98% Cu, 0.75 g/t Au, 2.5 g/t Ag.

The declared Ore Reserves and Mineral Resources at Prominent Hill in mid 2008, prior to the commencement of production in 2009, were:
    Copper resource - Measured + Indicated + Inferred Resources:   174.20 Mt @ 1.39% Cu, 0.56 g/t Au, 3.4 g/t Ag (0.5% Cu cut-off).
    Gold resource - Measured + Indicated + Inferred Resources:   109.2 Mt @ 0.09% Cu, 1.21 g/t Au, 1.0 g/t Ag (0.5 g/t Au cut-off & <0.5% Cu).
    TOTAL Resource:   283.4 Mt @ 0.89% Cu, 0.81 g/t Au, 2.48 g/t Ag.
    Western Copper resource (additional)  -  Inferred Resources:  14.5 Mt @ 1.69% Cu, 0.28 g/t Au, 3.7 g/t Ag (0.5% Cu cut-off).

The declared Ore Reserves and Mineral Resources at Prominent Hill in June 2011 were (OZ Minerals, 2012):
    Proved + Probable Reserves:   72.3 Mt @ 1.13% Cu, 0.64 g/t Au, 3.03 g/t Ag. (included within resources)
    Copper resource - Measured + Indicated + Inferred Resources:   214.9 Mt @ 1.23% Cu, 0.5 g/t Au, 2.8 g/t Ag.
    Gold resource - Measured + Indicated + Inferred Resources:   57.8 Mt @ 0.07% Cu, 1.5 g/t Au, 1.1 g/t Ag.

Remaining reserves and resources at Prominent Hill in June 2015 were (OZ Minerals, 2015):
    Proved + Probable Reserves:   73 Mt @ 1.0% Cu, 0.6 g/t Au, 2.9 g/t Ag.
    Copper-gold resource - Measured + Indicated + Inferred Resources:  152 Mt @ 1.2% Cu, 0.6 g/t Au, 2.8 g/t Ag.
    Gold resource - Measured + Indicated + Inferred Resources:  27 Mt @ 0.1% Cu, 1.3 g/t Au, 1.5 g/t Ag.

Remaining Ore Reserves and Mineral Resources at Prominent Hill at 30 June 2017 were (OZ Minerals, 2017):
  Ore Reserves
    Open Pit - Copper
        Proved + Probable Ore Reserves:   8 Mt @ 1.0% Cu, 0.6 g/t Au, 3 g/t Ag.
    Underground - Copper
        Proved + Probable Ore Reserves:   39 Mt @ 1.4% Cu, 0.6 g/t Au, 3 g/t Ag.
    Surface stockpiles - Copper
        Proved Ore Reserves:   12 Mt @ 0.8% Cu, 0.4 g/t Au, 2 g/t Ag.
    Surface stockpiles - Gold
        Proved Ore Reserves:   15 Mt @ 0.1% Cu, 0.8 g/t Au, 2 g/t Ag.
      TOTAL Proved + Probable Ore Reserves Copper + Gold:   74 Mt @ 1.0% Cu, 0.6 g/t Au, 3 g/t Ag.
  Mineral Resources - Copper (includes Ore Reserves)
    Open Pit (0.25% Cu cut-off)
        Measured + Indicated + Inferred Mineral Resources:   8 Mt @ 1.0% Cu, 0.6 g/t Au, 3 g/t Ag.
    Underground - (AUD 57 NSR envelope cut-off)
        Measured + Indicated + Inferred Mineral Resources:   120 Mt @ 1.2% Cu, 0.6 g/t Au, 3 g/t Ag.
    Surface stockpiles
        Measured Mineral Resources:   12 Mt @ 0.8% Cu, 0.4 g/t Au, 2 g/t Ag.
      TOTAL Measured + Indicated + Inferred Mineral Resources - Copper:   140 Mt @ 1.2% Cu, 0.5 g/t Au, 3 g/t Ag.
  Mineral Resource - Gold (includes Ore Reserves)
    Open Pit (0.25% Cu equiv. cut-off)
        Indicated + Inferred Mineral Resources:   <0.5 Mt @ 1.0% Cu, 0.9 g/t Au, 1 g/t Ag.
    Underground - (AUD 57 NSR envelope cut-off)
        Indicated + Inferred Mineral Resources:   7 Mt @ 0% Cu, 2.4 g/t Au, 1 g/t Ag.
    Surface stockpiles
        Measured Mineral Resources:   15 Mt @ 0.1% Cu, 0.8 g/t Au, 2 g/t Ag.
    TOTAL Measured + Indicated + Inferred Mineral Resources - Gold:   23 Mt @ 0.1% Cu, 1.3 g/t Au, 2 g/t Ag.
  TOTAL Measured + Indicated + Inferred Mineral Resources - Copper + Gold:   163 Mt @ 1.04% Cu, 0.6 g/t Au, 3 g/t Ag.

Production in 2016-17 was 112 008 t of Cu metal and 3.94 t Au

For more detail see the references listed below.

Return to top


Cloncurry Workshop  -  Led by Dr Nick Oliver (of HolcombeCoughlinOliver)   ...................... Sunday 24 February, 2013.

This workshop is to be held in Cloncurry, NW Queensland, and will involve both classroom and field components.   It will include:
  • An overview of the key characteristics and origins of IOCG deposits,
  • The geology and IOCG deposits of the Cloncurry district - including:
    - regional to local setting,
    - key geological and geochemical aspects relative to IOCG mineralisation,
    - distribution and controls on alteration and mineralisation in the Cloncurry terrane,
    - context to the deposits we will see and key details of those we wont be visiting, (e.g., Osborne, Eloise)
    - characteristics pertinent to exploration,
  • Interspersed field visits to nearby geological features illustrating the geology and regional alteration related to IOCG events.
Return to top


Ernest Henry and E1 Mines  -  NE of Cloncurry  -  Xstrata Copper, Ernest Henry Mines   ...................... Monday 25 February, 2013.

The Ernest Henry IOCG style Cu-Au deposit is located 35 km NE of Cloncurry, 150 km east of Mt Isa and 750 km west of Townsville in north-west Queensland (#Location: 20° 26' 40"S, 140° 42' 21"E).

The deposit lies to the east of the Cloncurry Overthrust, within the Cloncurry-Selwyn zone of the Cloncurry Terrane, which comprises the eastern exposed margin of the Mount Isa Inlier of North-west Queensland. It contains IOCG deposits that are hosted by Palaeoproterozoic (1760-1660 Ma) silici-clastic metasedimentary and metavolcanic rocks that were deposited during periods of ensialic rifting.

The Ernest Henry deposit is hosted within the Eastern Succession of the Mount Isa Inlier, that consists of a poly-deformed Palaeo- and Mesoproterozoic volcano-sedimentary succession which is largely composed of evaporite-rich Cover Sequence 2 and silici-clastic-rich Cover Sequence 3 rocks (CS2 and 3). CS2 and 3 were deposited between 1790 and 1690 Ma and from 1680 to 1610 Ma respectively. To the west, these sequences overlie an older crystalline basement and a core of predominantly Cover Sequence 1 felsic volcanic and related intrusive rocks that correspond to the 1870 to 1850 Ma Barramundi Orogeny of northern Australia. Basement is not exposed in the Cloncurry district. Both CS2 and 3 were deposited in intracontinental rift settings, although the relationship between some parts of the sequence is obscured by the deformation history. Both sequences were also accompanied by the emplacement of various intrusive and volcanic rocks.

The first significant deformation to affect CS2 (but not CS3) was the 1750 to 1735 Ma Wonga extensional event. CS2 was extensively intruded by the 1750 to 1730 Ma Wonga Granite to the west, while the coeval Mount Fort Constantine volcanics are found to the NE. Minor tonalites, granitoids and diorite emplaced between CS2 and 3 have been dated at 1686 to 1660 Ma (including the Ernest Henry Diorite).

Thin skinned deformation of the ~1600 to 1520 Ma Isan Orogeny terminated deposition of Cover Sequence 3, and resulted in gross eastward tectonic transport, interleaving of major lithostratigraphic units, and a dominant north-south tectonic grain. This deformation has been divided into: a D1 event, which involved overall north-south compression, and is characterised by large-scale thrusts and isoclinal folds, thrust reactivation of large, km-scale, basin bounding extensional faults with CS3 rocks thrust over CS2, resulting in overturned limbs and a penetrative rock mass foliation; a D2 event, involving horizontal east-west compression producing major north-south upright to isoclinal folding of CS2 and 3 rocks, and a penetrative cleavage, which peaked at 1595 to 1580 Ma with a regional greenschist to upper amphibolite facies metamorphism and the development of anatectic pegmatites; and a D3 event which includes NW- and NE-trending brittle-ductile corridors of faulting, kinking and folding with steep plunges to the NW and NE, and dominantly north-south trending shear and fault zones and associated breccia formation.

Both CS2 and 3 were intruded by the voluminous Williams and Naraku granite batholiths at 1540 to 1500 Ma (including the 1530 Ma Mt Margaret Granite immediately to the east of the E1 deposits; Marshall and Oliver, 2007; Page and Sun, 1998). These represent the youngest felsic intrusions in the inlier, and have an outcrop exposure of >1500 km
2. They were emplaced in an intracratonic environment, and have a pre-, syn- and post-D3 timing, and are largely composed of alkaline to sub-alkaline, K-rich, A-type, magnetite-bearing granitoids. They range from diorite to syenogranite in composition and are typically more oxidised than similar older (~1670 Ma) granitoids in the Western Fold Belt of the Mount Isa Inlier. Sodic intrusions of similar age are rare.

A regionally extensive Na-Ca hydrothermal system in the Cloncurry district (>1000 km
2) affected all rock types, especially the resultant calc-silicate-rich lithologies of cover sequence 2. This alteration appears to have been formed by multiple periods of hydrothermal activity that locally overlapped and is most intense in breccia zones along large structural conduits and within calc-silicate-rich units. The bulk of the sodic-calcic alteration, dominantly regional albite and scapolite, was associated with fluids that were initially mostly sedimentary formation waters with lesser magmatic components, prior to and during peak metamorphism (Kendrick et al., 2008; Oliver et al., 2008; Baker et al., 2008). Subsequent more structurally controlled albite-actinolite-magnetite-titanite±clinopyroxene assemblages, were synchronous with major granite (e.g., Williams-Naraku batholiths) emplacement (Baker et al., 2008), involving a larger magmatic fluid component, and coincided with formation of the majority, but not all of the significant oxide Cu-Au deposits. These deposits may have some stratigraphic control, but are usually associated with brittle and brittle-ductile shear and fault structures which acted as conduits for the transport of high temperature (300 to 500°C) saline fluids into the host rocks (Williams, 1998).

The Ernest Henry deposit is concealed by 35 to 60 m of extensive Phanerozoic cover and does not outcrop. While the exact stratigraphic position of the host rocks is not known, they have been tentatively correlated with the 1730 ±10 Ma Mount Fort Constantine Meta-volcanics towards the top of Cover Sequence 2. The Mount Fort Constantine metavolcanics comprise dacite and andesite with subordinate metabasalts and calc-silicate metasedimentary rocks. The only other outcrop in the district is the 1480 Ma Mount Margaret granite some 12 km to the east. Within Cover Sequence 2, volcanism is common between 1790 and 1780 Ma, and 1760 to 1720 Ma, with later 1540 to 1450 Ma granitoids.

Within the immediate orebody area the principle lithologies encountered are: i). altered plagioclase phyric andesitic volcanic/hypabyssal rocks (ca 1740 Ma) which host the orebody where they are brecciated; ii). various siliciclastic, calc-silicate-rich and graphitic metasedimentary rocks that occur as <10 m thick intercalations within the metavolcanic rocks; and, iii). medium-grained metadiorite (ca 1660 Ma).

Structural analysis suggests that ore deposition accompanied reverse-fault movement between two northeast trending bounding shear zones and formed a pipe-like zone of dilation in the K-feldspathised metavolcanic rocks. The breccia pipe, plunges at ~45° to the SSESSE, nested between the ductile shear zones (Rusk et al., 2010). The orientation of this dilational zone is consistent with the shape and dip of the Ernest Henry ore breccia.

Four stages of alteration are recognised at Ernest Henry:
i). Regional pre-ore Na-Ca alteration, occurring mainly as albitic plagioclase-, magnetite-, clinopyroxene- and amphibole-rich veining and fault-related breccia-fill.
ii). Pre-mineralisation potassic-(manganese-barium) alteration which only contains minor sulphides, and is typified by multiple stages of K feldspar-, biotite-, amphibole-, magnetite-, garnet- and carbonate-bearing veins, and by fault-related breccia and alteration.
iii). Mineralisation associated alteration, characterised by K feldspar veining and alteration. K feldspar alteration is most intense in the vicinity of copper-gold mineralisation, but forms a halo extending from several hundred meters up to 2 km beyond the ore body (Mark et al., 2006), although this outer halo may represent part of pre-ore regional alteration zone. Mineralisation is divided into two main stages, characterised by similar mineral assemblages. The first stage of economic Cu-Au mineralisation was the main ore-forming event, associated with a matrix-supported hydrothermal breccia that is enveloped by crackle veined K feldspar altered meta-volcanic rocks. The second stage of mineralisation occurs as a network of veins cutting earlier infill-supported ore-breccias, and contains a largely identical mineralogy to earlier stage. The ore-bearing assemblage dominantly comprises magnetite, pyrite, chalcopyrite, carbonate and quartz, with lesser apatite, barite, titanite, actinolite, biotite and fluorite. In the upper levels of the deposit, the bulk of the ore is present as hypogene chalcopyrite infilling between K feldspar-altered breccia clasts, while at greater depths, it both infills between, and replaces clasts. Electrum and native gold are closely associated with pyrite and chalcopyrite (Foster et al., 2007).
iv). Post-ore, volumetrically minor, multiple stage calcite-dolomite- and/or quartz-rich veining and alteration which lacks magnetite, and only carries a little gold. Deeper in the deposit, breccias include rounded clasts of previously mineralised breccias containing magnetite, pyrite and chalcopyrite, indicating multiple superimposed brecciation events (Rusk et al., 2010).

Rusk et al. (2010) interpret the data from Ernest Henry to be consistent with the following genetic trend:
i). Rapid devolatilisation (of possibly both chloride-rich brines and CO
2-rich fluids) within the source magma chamber;
ii). Fluid over-pressuring in the roof of the magma chamber as a result of volatile exsolution and vapour expansion, assisted by a seal created by magma solidification, sodic-calcic alteration and/or contact metamorphism in the carapace of the igneous complex;
iii). Possible leakage of over-pressured magmatic fluid along structures controlling the location of the later breccia pipe, producing a pre-ore potassic alteration halo;
iv). The eventual failure of the seal and sudden release of fluid pressure, resulting in a high-energy fluid flow event driving brecciation and upward transported and milled clasts. The resultant breccia mass permitted the mixing and/or subsequent ingress of basinal brines circulating within fractured rocks several kilometres above the magma chamber. Fluid mixing, rapid depressurisation and resultant cooling led to ore precipitation within the matrix porosity between breccia clasts at the top of the orebody, where, as the fluid flow, temperature and pressure declined the breccia was sealed;
v). At depth, closer to the heat source, the temperature and pressure gradient degraded more slowly, allowing for fluid-rock reaction to be more protracted, such that prolonged chemical interaction between K feldspar-rich host rocks and ore fluids led to replacement style mineralisation within clasts, with the same mineral assemblage as observed in the shallower parts of the deposit.
vi). At the deepest levels, repetition of the cycle may have resulted in the release of a new pulse of fluids which brecciated and tapped earlier formed magnetite-chalcopyrite rich rocks, telescoping mineralised clasts upwards into the orebody along narrow channels, thereby upgrading ore.

The brecciated volcanic mass that hosts the ore forms a plunging elongate body, some 250 m thick, 300 m average length and extending at least 1000 m down plunge to the SSE. The breccia ranges from the unbrecciated volcanics, to crackle fracture veining to clast supported and matrix supported breccia to total clast digestion (massive matrix). The breccias typically contain 5-20 mm subrounded to rounded meta-volcanic and rare biotite altered meta-sedimentary clasts. The matrix is largely composed of magnetite, calcite, pyrite, biotite, chalcopyrite, K feldspar titanite and quartz. Accessory minerals include garnet, barite, molybdenite, fluorite, amphibole, apatite, monazite, arsenopyrite, a LREE fluorcarbonate, galena, cobaltite, sphalerite, scheelite, uraninite and tourmaline. The bulk of the economic mineralisation is restricted to breccia zones with more than 10% matrix.

The total reserve + resource prior to the commencement of mining in 1998 was 166 Mt @ 1.1% Cu, 0.54 g/t Au.
As of June 2003 the remaining resource totalled 117.9 Mt @ 1.13% Cu, 0.52 g/t Au.
At 30 June 2006, the reserves and resources were (Xstrata, 2007):
    Open cut proved reserves - 41 Mt @ 0.9% Cu, 0.5 g/t Au + probable reserves of 20 Mt @ 0.8% Cu, 0.4 g/t Au,
    Open cut measured + indicated resources were the same as, and included the proved and probable reserves,
    Open cut inferred resources - 1 Mt @ 0.4% Cu, 0.2 g/t Au,
    Underground indicated resources - 21 Mt @ 1.5% Cu, 0.7 g/t Au + inferred resources of 23 Mt @ 1.4% Cu, 0.7 g/t Au,

Open pit as at December, 2011 (Xstrata, 2012):
    Total resource and reserve - depleted during 2011 from 17 Mt @ 1.0% Cu, 0.5 g/t Au, 23% magnetite at December 31, 2010
Underground as at December, 2011 (Xstrata, 2012):
    Measured resource - 4 Mt @ 1.3% Cu, 0.7 g/t Au, 32% magnetite
    Indicated resource - 71 Mt @ 1.3% Cu, 0.7 g/t Au, 28% magnetite
    Inferred resource - 13 Mt @ 1.2% Cu, 0.6 g/t Au, 26% magnetite
    Total resource - 88 Mt @ 1.3% Cu, 0.7 g/t Au, 28% magnetite
    Total ore reserve (all probable) - 74 Mt @ 0.95% Cu, 0.5 g/t Au, 23% magnetite.

The operation is controlled by Ernest Henry Mining Pty Ltd, a subsidiary of Glencore plc.

The Mount Margaret mining operation exploits the Monakoff and E1 group of IOCG-style copper-gold deposits in the Cloncurry District of NW Queensland, Australia.   Monakoff is located ~15 km ENE of Cloncurry, and is 20 km south of the Ernest Henry deposit. The E1 group of deposits are 22.5 km to the NNE of Monakoff and 8 km east of Ernest Henry.   The Mount Margaret ore is treated at the Ernest Henry mine (#Location: E1 20° 26' 36"S, 140° 47' 10"E; Monakoff 20° 37' 30"S, 140° 41' 20"E).

All of these deposits are hosted within the Eastern Succession of the Mount Isa Inlier, which consists of poly-deformed Palaeo- and Mesoproterozoic volcano-sedimentary Cover Sequences 2 and 3 (CS2 and 3), deposited between 1790 and 1690 Ma and from 1680 to 1610 Ma respectively.

For details of the regional setting and geology of the northeastern Cloncurry district, see the Ernest Henry record.

E1 Group

The four main E1 group deposits (E1 North, South, East and Central) are distributed over a NNW-SSE elongated area of approximately 1750 x 650 m. They are overlain by between 15 and 40 m of unconsolidated Mesozoic to Cenozoic cover, underlying an essentially flat pastoral landscape, and are hosted in a series of steeply dipping, folded and brecciated meta-sediments and meta-volcanic lenses that belong to the Soldiers Cap Group of CS3.

The host sequence in the deposit area comprises a lower unit of variously brecciated, silicified and 'red-rock' altered, meta-sedimentary and calc-silicate rocks, that include polymictic breccias. These pass up into a 100 to 200 m thick basalt, overlain by a trachyte unit with a similar thickness, followed in turn by black shale. It is likely that the 'red-rock' altered, meta-sedimentary and calc-silicate rocks belong to the Doherty/Corella Formation of CS2, and the basalt and trachyte units represent the Toole Creek Volcanics of the CS3 Soldiers Cap group.

In the immediate deposit area, this sequence has been tightly folded to form an 'S' shaped structure, representing two limbs of a NNW-SSE-trending syncline, with a tight, complexly faulted anticlinal axis to the NNW, and a faulted, but slightly less faulted synclinal axis to the SSE. The structure is truncated by two faults, the regional, north-south-trending Mount Margaret to the east, and another semi-parallel north-south to NNE-SSW-trending fault 1.5 km to the west.

The full sequence is represented on the western limb of the main syncline, with the black shale occupying the core of the structure. However, a fault parallel to, and just to the east of the fold axis, juxtaposes the black shale of the synclinal core, with brecciated metasedimentary rocks to the east, with both volcanic units being structurally removed. These rocks are then cut to the east by the Mount Margaret granite. Sill-like lenses of dolerite cut the brecciated metasedimentary rocks on the eastern limb of the syncline. Black shales are found to the east across the Mount Margaret Fault from the synclinal closure to the SSE.

Continuity of the host sequence to the west of the anticlinal closure in the NNW is unclear from the data available.

A folded, NNW-SSE-elongated, ~550 x 150 m structural inlier of undifferentiated mafic volcanic rocks, with intercalated black shales, is enclosed within the brecciated metasedimentary rocks in the northern part of the eastern limb, hosting the E1 East orebody. This enclave includes two steeply dipping (structurally repeated ?) 20 to 75 m thick banded-massive ironstone lenses that host the sulphide ore over strike length of up to 300 m, terminated at ~280 m below the Mesozoic unconformity by calc-silicate/polymict breccias.

The E1 North deposit is hosted by a series of steeply dipping lenses of magnetite-rich metasedimentary and metavolcanic rocks in the main faulted anticlinal closure to the NNW. The immediate deposit is bounded by two NNE-trending faults to the east and west, each dipping inwards and intersecting at depth, although mineralisation is repeated across these faults to the southeast. The main body plunges steeply over a down-plunge distance of >300 m and widths of 20 to 100 m. A high grade, flat lying blanket of supergene mineralisation straddles the base of oxidation, laterally outwards for up to 100 m from the steep hypogene ore zone, over thicknesses of 15 to 65 m, with intersections such as 64.6 m @ 2.87% Cu, 0.32 g/t Au, 153 ppm U
3O8 from 31.4 to 96 m, including 16.6 m @ 9.04% Cu, 0.72 g/t Au & 280 ppm U3O8 from 31.4 to 48 m.

The E1 South deposit is contained in a parallel series of 6 nested/stacked, folded, parallel and concordant geologically and geochemically defined lenses of banded-massive ironstone. These lenses are folded as a NNW plunging synclinal structure, with the axial plunge shallowing to the NNW and with depth. Individual lenses are 10 to 30 m in thickness, and are largely restricted to the trachytic unit, from the contact with the underlying basalt at the base, to the margin with the overlying black shale. The most extensive of these lenses are truncated to the east by the axial fault (which removes the volcanic units of the eastern limb of the syncline, as described above), and extend around the fold nose to the western limb where most lens-out. These lenses are continuous over varying strike lengths of between 100 and 600 m, and to a maximum vertical depth of 320 m below the unconformity (Exco Resources, 2008).

The E1 Central deposit represents one (or more?) of the E1 South 'lenses' which is continuous over a strike length of more than 1 km along the NNW-trending western synclinal limb, to connect with the E1 North deposit. At the unconformity with the overlying Mesozoic to Cenozoic cover, this mineralised ironstone follows the contact between the basalt and trachyte units, and is underlain by a variably developed zone (up to a few metres thick) of carbonate alteration within the basalt.

The sulphide copper-gold mineralisation occurs predominantly within magnetite, pyrrhotite, and chalcopyrite-pyrite mineral assemblages. The principal components include magnetite (20 to 30%), micas (25 to 30%), quartz (12 to 15%), ankerite/calcite (5 to 15%), pyrite (3 to 12%), alkali feldspars (2 to 7%), fluorite (1.5 to 2.5%), apatite (0.5 to 2.5%), chalcopyrite (1.5 to 2.5%), bornite (0 to 0.1%), sphalerite (0 to 0.15%).

The source of information for the E1 group of deposits was drawn from reports by Exco Resources dated from 2007 to 2011, and sketch maps included therein.

Monakoff

Two major units predominate in the Monakoff area: the Soldiers Cap Group (1680 to 1660 Ma; Page and Sun, 1998) of the informally defined Maronan Supergroup, which is part of CS3, and the Corella Formation of CS2 (~1740 Ma; Page, 1988). Surface geology and seismic interpretation indicates the two to always be in tectonic contact. The two major contacts between these units are the Cloncurry Overthrust and the Pumpkin Gully Fault. The Soldiers Cap Group comprises a conformable carbonate-poor stratigraphic succession that passes upwards from the pelites and arenites of the Llewyllen Creek Formation, through the quartzo-feldspathic arenite, carbonaceous pelite, metagreywacke, metabasalt and iron formation of the Mount Norna Quartzite, to the metabasalt, minor carbonaceous metasedimentary rocks and iron formation of the Toole Creek Volcanics (Derrick et al., 1976). Sills and dykes of dolerite were widely intruded, predominantly prior to the main metamorphism, and in some cases before consolidation. The Corella Formation comprises well bedded scapolitic carbonate and quartzo-feldspathic layers, which is inferred to have been deposited within a shallow marine to evaporitic shelf environment (Reinhardt,1986). It has been subjected to strong intra-formationally brecciated and in places contains exotic clasts. Cu-Au mineralisation in the district is mostly hosted within the Soldiers Cap Group, with only minor occurrences adjacent to or within the Corella Formation breccias within 1 km of more significant accumulations.

Monakoff occurs within an unusual east-west trending belt of Soldiers Cap rocks, on the south-dipping limb of the Pumpkin Gully Syncline which is considered to be a regional east-west fold formed during D2 deformation. The deposit occurs along a tectonic contact between the Mount Norna Quartzite and the Toole Creek Volcanics (Ashley, 1983), and corresponds to a regionally extensive linear magnetic anomaly, with sporadic iron formations and ironstones as its outcrop expression. No granitic intrusives have been identified at Monakoff. The nearest granites, 2 km to the north, are outcropping hills of the Naraku Batholith, with the main metamorphic aureole to the batholith occurring a further 2 km NW.

The host Soldiers Cap rocks are separated from Corella breccia to the north and west by D1 thrust faults, while a splay of the northern thrust (the Monakoff Shear) hosts the Monakoff mineralisation (Davidson, et al., 2002). An east-west orientated fault separates the western and eastern zones of mineralisation. The Monakoff deposits comprise sulphide copper-gold mineralisation hosted by a well defined, east-west striking iron-rich alteration zone within steeply south dipping meta-sediments and amphibolites. The western zone of mineralisation forms a steeply east-dipping sheet 700 m long by 2 to 10 m thick, which is open at depth. The smaller eastern zone, which is 100 m northeast of the end of the western zone, forms a pipe-like breccia body that plunges very steeply to the west, with a 40 m strike length at the surface. Monakoff East is slightly deeper in the stratigraphy than the Monakoff West Zone (Davidson et al., 2002).

The upper 100 m of footwall lithologies comprise thinly (1 to 3 mm) intercalated magnetite-bearing muscovite pelites, psammopelites, and meta-dolerites of the uppermost Mount Norna Quartzite, overlain by massive porphyroblastic garnet-biotite schist (mostly of intrusive andesitic igneous origin, although the upper 3 to 5 m are vesicular), then a regionally persistent magnetite iron formation, and finally by strongly sheared metasediments immediately hosting the Monakoff West ore. The continuous, 1 to 2 m thick, prominently banded, quartz-magnetite±hematite iron formation can be traced through the whole prospect, occurring ~5 to 10 m above the top of the porphyroblastic garnet-biotite schist, hosted by pelitic metasediment. Banding varies from 1 to 2 mm 'wrinkly' lamination (possibly crenulations), to 0.5 cm interbands of quartz-barite, and spessartine-magnetite. The metadolerites are present as continuous sills, locally with angular contacts and variable epidote alteration, particularly adjacent to sediment contacts.

The hanging wall above the thin strip of sheared metasediment that hosts ore, commences with a 20 to 30 m thick interval of short strike-length metabasalts, minor iron formation, volcanic conglomerate, and breccia bearing clasts of limestone and meta-dolerites. A local pillow breccia outcrops close to the ore package near the centre of the deposit, while black carbonaceous limestone and stromatolitic cherts are also reported. More common rocks of the Toole Creek Volcanics occur above this complex, comprising massive medium- to coarse-grained meta-dolerite to gabbro in the west, and mixed meta-dolerite, meta-basalt, siliceous siltstone and minor iron formations in the east (Davidson et al., 2002).

The "ore package" is defined as the altered rocks adjacent to the ore, the ores themselves, and the overlying altered sediments and basaltic tuff, all of which young and dip to the south.   Near-ore alteration in the footwall commences with porphyroblastic spessartine-biotite-quartz-plagioclase-chloritoid-tourmaline-biotite development within the meta-andesite, with idioblastic garnet occuring as disseminations or irregular bands localised on peperite zones. Locally, pink spessartine is overgrown by coarse-grained almandine + quartz, indicating peak metamorphism exceeded the almandine isograd. The timing of almandine stability is uncertain (Davidson et al., 2002).

The major enriched components of the ore compared to the country rocks are: S (>20% S), Ba (>25% BaO), F (~2 to 10% F), Fe (>10% FeO) and Ca (~10% CaO), with significant enrichments of minor element including economic Co, Cu, Au and Ag, plus, Pb, Sb, As, W, U, La, Ce and Zn. P
2O5 abundances are low, with most ores containing only 0.2 to 0.4 wt.% P2O5. The highest values are systematically found in the iron formation, although no strong Fe-P correlation exists when all of the data is considered. La and Ce abundances are also very high, with values typically of >1000 ppm. Rather than apatite, the host phase for REE, U, and possibly P2O5, is monazite, which is common in ore intersections, and concentrates the LREE (Davidson et al., 2002).

Post-peak metamorphic alteration is abundant above the garnet-biotite schist, zoned around the ores, low-angle shears and tension gashes. The general alteration sequence distributed over widths of 0.5 to 10 m from mineralised zones is: i). an outer chlorite-spessartine; ii). biotite-magnetite±pyrite; to iii). siderite-magnetite±pyrite assemblages, as ore or sulphide-bearing veins/fractures are approached. When this alteration occurs within meta-siltstones it takes the form of pseudo-breccias where 'clasts' have distinct dark biotite-rich centres. Carbonate alteration also preferentially affects thin basaltic dykes or extrusives. Between the Monakoff West and East deposits, porphyroblastic garnet-biotite schist is replaced by unmineralised albite around a sinistral D3- to post-D3 fault, This assemblage is not seen elsewhere in the prospect, although regionally it is common in association with post-orogenic granites (Davidson et al., 2002).

The western Monakoff ore zone is enclosed by, and replaces, magnetite-bearing meta-siltstones, occurring at surface as a friable, but resistant, massive unit with variable black pyrolusite and malachite staining. At depth it occurs as a massive unit composed of barite, ponite (Fe-rhodochrosite), magnetite, chalcopyrite, pyrite, spessartine, fluorite ±K-feldspar, sphalerite, galena, arsenopyrite, mackinawite, molybdenite, brannerite/davidite, pentlandite and linnaeite (Ashley, 1983).

The eastern Monakoff ore zone appears to mainly comprise replacement of a medium- to coarse-grained amphibolite, within a tight D2 fold adjacent to an unexposed east-west fault, represented at surface by buff-coloured silica, studded with randomly oriented crystals of coarse magnetite, magnetite-hematite, and hematite, that are consistent with faithful pseudomorphing of meta-gabbro. The silica is most likely a surficial regolith replacement product of carbonate. At depth this rock-type is a package of comparatively thin massive meta-dolerites and intercalated peperitised sediments, with the contact between the two lithologies preferentially silicified, and an alteration zonation into the sediment of i). siderite-magnetite-pyrrhotite-chalcopyrite; ii).  magnetite-siderite-quartz, to iii). biotite-quartz-magnetite over 1 m or less, while the adjacent dolerite contains incipient siderite alteration. It is interpreted that in the core of the fold, severe alteration affected the interior of the folded metadolerite as well as the sediment margins. The fluids, which were tightly focussed by the fold structure, produced wholesale replacement of dolerite, and a narrow west-plunging pipe with grades of 1.4 to 3.0% Cu, consisting of siderite-barite-magnetite-chalcopyrite, which is likely to have considerable depth extent (Davidson et al., 2002 and sources quoted therein).

Resource and reserve figures for the Mount Margaret Operation deposits were:
E1 group of deposits (Exco Resources, 2010 - Xstrata, 2012 quotes the same tonnages and grades to lesser decimal poiints) :
    Measured resource - 9.17 Mt @ 0.87% Cu, 0.25 g/t Au
    Indicated resource - 24.7 Mt @ 0.71% Cu, 0.21 g/t Au
    Inferred resource - 14.2 Mt @ 0.64% Cu, 0.2 g/t Au
    Total resource - 48.1 Mt @ 0.72% Cu, 0.21 g/t Au
Monakoff + Monakoff East deposits (Exco Resources, 2010):
    Indicated resource - 2 Mt @ 1.39% Cu, 0.44 g/t Au
    Inferred resource - 2 Mt @ 1.3% Cu, 0.4 g/t Au
    Total resource - 4 Mt @ 1.32% Cu, 0.42 g/t Au
Monakoff + Monakoff East deposits (Xstrata, 2012):
    Indicated resource - 2 Mt @ 1.4% Cu, 0.4 g/t Au
    Inferred resource - 1 Mt @ 1.2% Cu, 0.4 g/t Au
    Total resource - 3 Mt @ 1.33% Cu, 0.4 g/t Au
Nearly 3500 t of U
3O8 is contained within these deposits. The average in-situ recoverable grade is ~112 ppm U3O8.

Return to top


Mount Elliott and Merlin  -  Selwyn District, NW Queensland  -  Ivanhoe Australia   ...................... Tuesday 26 February, 2013.

The SWAN and Mount Elliott deposits are located within the Eastern Fold Belt of the Mount Isa Inlier in northwest Queensland, approximately 90 km south of Cloncurry and 20 km north of the Selwyn deposits (#Location: 21° 32'S, 140° 30'E).

For geological background on the setting, see the Cloncurry IOCG Province record.

These two deposits are part of the same mineralised system in which host rock chemistry and rheology control mineralisation style within the same low grade envelope. The two deposits are separated by a major steep fault zone.

The Eastern Fold Belt comprises a sequence of 1890 to 1610 Ma metasediments and volcanics that have been intruded by three main phases of igneous rocks. On a local scale, the SWAN and Mount Elliott deposits are situated close to the contact of the Kuridala and Stavely Formations. Mount Elliott occurs within the phyllite, schist and black shale of the Kuridala Formation at the base of the Soldiers Cap Group, which in the deposit area comprises a package of intensely skarn-altered (clinopyroxene ±actinolite, magnetite, scapolite and apatite) phyllites, schists and metadolerites. SWAN is hosted within a breccia that has been emplaced into a package of banded and brecciated calc-silicates and calcareous sediments of the Stavely Formation, a younger unit which has been correlated with the Mount Norna Quartzite. The structural (overturned) footwall lithology to mineralisation at SWAN is a massive calc-silicate (coarse-grained calcite, tremolite, albite, scapolite, actinolite, muscovite and chlorite), layered calc-silicates (1 to 10 cm interlayered and boudinaged bands of very fine-grained siliceous material, commonly hematite-stained and albite-altered, alternating with coarse-grained calcite, tremolite, albite, scapolite, actinolite, muscovite and chlorite) and intensely altered and sheared metasediments (Brown, Lazo, Kirwin and Corlett, 2009).

A 200 to 400 m wide body of metadiorite/metagabbro lies within the southern portion of SWAN, comprising medium- to fine-grained actinolite, plagioclase, biotite, quartz, tremolite, magnetite, epidote and calcite. It has a relatively unaltered core, although the margin adjacent to the SWAN breccia is strongly hematite-stained, albite altered and brecciated (Brown, Lazo, Kirwin and Corlett, 2009).

The majority of the SWAN mineralisation is hosted by the SWAN breccia, which is crackle- to matrix-supported, with angular to rounded, strongly albite-altered calc-silicate and metadolerite fragments set in a fine- to coarse-grained matrix of hematite-stained albite, clinopyroxene, actinolite, magnetite, calcite, pyrite and chalcopyrite. The fragments are from centimetres to metres across. A 30 to 100 m thick banded calc-silicate unit forms the eastern margin of both the SWAN breccia and the massive calc-silicates, and comprises regular 0.5 to 3 cm thick bands of hematite-stained albite, magnetite, clinopyroxene, actinolite, epidote and calcite, which are commonly mineralised on margin of the breccia (Brown, Lazo, Kirwin and Corlett, 2009).

The banded calc-silicates grade, over a 10 to 30 m interval, into a quartz, muscovite, and chlorite schist to the east.

The SWAN deposit is cross-cut by several narrow, 1 to 30 m thick, ~30° SE dipping, late-stage, pink to grey felsic (plagioclase, K-feldspar, quartz, chlorite after biotite, titanite, magnetite, pyrite and chalcopyrite) dykes with chilled margins. These dykes cut the mineralised breccias and pre-date late-stage mineralised veins. A 5 to 30 m wide, commonly mineralised, steeply dipping, dominantly sinistral strike-slip fault separates the SWAN and Mount Elliott deposits. Numerous smaller anastomosing faults cut the main mineralised breccia and appear to have channelled late-stage fluids, dissolving the carbonate gangue of the breccia leaving friable highly porous ore (Brown, Lazo, Kirwin and Corlett, 2009).

Four main styles of primary Cu-Au mineralisation are recognised within the Mount Elliott and SWAN deposits: i). The Mount Elliot breccia, ii). the SWAN breccia, iii). banded/replacement mineralisation and iv). late vein hosted mineralisation. These styles are manifested as follows. At Mount Elliott, mineralisation is dominantly within the Mount Elliot breccia, with 0.1 to 20 m wide clasts set in a very coarse-grained, open spaced matrix containing voids up to tens of metres wide. The fragment within the SWAN breccia are much smaller than in the Mt Elliot breccia, and mineralisation at the former is considered to have formed some time after the development of the breccia which created a large porous and chemically suitable trap. Mineralisation permeated, replaced and altered the banded calc-silicate on the eastern margin of the SWAN breccia, forming banded mineralisation of magnetite, hematite-stained albite, chalcopyrite, pyrite, clinopyroxene, actinolite and epidote. Late-stage, 1 to > 200 cm thick veins of coarse-grained calcite, chalcopyrite, pyrite and molybdenite represent an event that crosscuts all of these mineralisation styles (Brown, Lazo, Kirwin and Corlett, 2009).

Mt Elliot mine was earlier (Shiqi Wang and Williams, 2001) described as containing 2.9 Mt @ 3.33% Cu, 1.47 g/t Au, hosted by carbonaceous meta-pelites and amphibolites, occurring in two zones controlled by NW trending, NE dipping brittle faults in a 200 m wide zone of intense post peak metamorphic alteration. It was interpreted as comprising an older, outer, system of albitised meta-sediments (bleached by the loss of biotite and carbonaceous material), over-printed by a "skarn" zone of diopside-hedenbergite veins and replacement features with abundant scapolite, apatite and calcite. Sulphides and magnetite (from outer pyrrhotite-pyrite to chalcopyrite-pyrrhotite-pyrite to chalcopyrite-pyrite-magnetite to magnetite-pyrite±andradite in the core) occur within the skarn, veining and replacing clinopyroxene and intergrowing with calcite.

Brown, Lazo, Kirwin and Corlett (2009) quote a resource at SWAN and Mt Elliot of:

    475 Mt @ 0.5% Cu, 0.38 g/t Au at the cut-off grade of 0.25% eCu, still open at depth, including a high grade resource of:
      62 Mt @ 1.01% Cu, 0.4 g/t Au at a cut-off of 1.0% eCu.

Return to top


Roseby Project  -  NW of Cloncurry  -  Altona Mining   ...................... Wednesday 27 February, 2013.

The Roseby Project supergene oxide copper deposits, including Blackard, Scanlan, Longamundi, Legend, Great Southern, Caroline and Charlie Brown and the related Little Eva and associated primary IOCG deposits, are located within the Mt Roseby Corridor, approximately 65 km NNW of Cloncurry in north-west Queensland, Australia.

For geological background on the setting, see the Cloncurry IOCG Province record.

The Mt Roseby Corridor is occupied by weakly metamorphosed calc-silicates, siliciclastics and minor intermediate igneous rocks of the Mesoproterozoic Cover Sequence 2 Corella Formation in the Eastern Succession of the Mt Isa Inlier. In addition to the Little Eva and the Blackard deposits, the corridor also embraces the Dugald River discordant sediment-hosted (47.9 Mt at 12.1% Zn, 2.1% Pb, 44 g/t Ag) and Lady Clayre silica-dolomite hosted deposits (14 Mt at 0.56% Cu, 0.19 g/t Au).

Little Eva is the largest primary IOCG-style sulphide copper-gold deposit within the Roseby Project, and is located ~6 km north from the Blackard deposit. Fresh rock is overlain by a 5 to 25 m thick weathered zone of copper oxide mineralisation, in which copper occurs in both iron oxide and secondary 'oxide-zone' minerals (e.g., malachite). Mineralisation extends over a strike length of 1200 m, and is hosted within an intermediate feldspar porphyry unit of probable volcanic or shallow intrusive origin, which strikes north and dips 60° E. The porphyry ranges in width from 30 m in the north to over 300 m in the central zone. In the north, the porphyry is mineralised over its entire width, although in the central zone, while copper is ubiquitous, grades are lower. This mineralisiton occur as a series of linear, parallel sheets of higher grade separated by lower grade material. Within these zones, copper occurs on average as 0.1 to 2% coarse gained chalcopyrite as disseminations and veinlets, while only minor amounts of other sulphide minerals are present. The host rock is veined and altered to a hematite-albite-carbonate-quartz assemblage. Mineralisation is present to depths of >350 m. Metallurgical testing established an expected copper recovery of 95.8% to a concentrate grading 27.3% Cu and gold recovery of 94% for a concentrate grade of 5 g/t Au.

The Blackard-style mineralisation occurs as a group of supergene native copper deposits within the Mt Roseby Corridor. They are distributed along a north-south oriented, 5 to 60 m wide, folded and faulted copper-bearing unit within the Corella Formation, referred to as the Roseby Cupriferous Horizon. This horizon is exposed semi-continuously over a strike-length of around 30 km and is typified in outcrop by malachite-stained scapolite-biotite schist.

In the zone of oxidation and supergene enrichment, an approximately 30 m thick oxide cap which hosts some malachite resources, overlies a thick zone, locally extending to depths of 240 m, of supergene copper enrichment which comprises native copper with minor chalcocite. The supergene mineralisation is hosted by soft, clayey, scapolite schists derived from a dolomitic quartz siltstone and calc-silicate sequence. Native copper occurs as blebs, wafers and wire forms within the soft host.

The main Blackard deposit has a length of around 4 km and width of generally 100 m, but over sections up to as much as 400 m. The 0.5% cut-off mineralisation averages 40 to 80 m in vertical thickness, the top of which is at approximately 40 m below the surface.

The main Scanlan deposit is 10 km south of Blackard and has a length of around 1.5 km and width of generally 100 m, but over sections up to as much as 400 m. The 0.5% cut-off mineralisation averages 40 to 80 m in vertical thickness, the top of which is at a depth of approximately 40 m.

Below the base of weathering and the copper-only supergene deposits, the primary mineralisation comprises disseminated copper sulphides within carbonate-altered meta-siltstone and scapolitic calc-silicate. The sulphides are commonly zoned within the horizon, with chalcopyrite being found at the top, grading into bornite and finally to chalcocite at the base. Other sulphides are rarely seen, and the chalcocite and bornite have the characteristics of being primary in origin.

Generally, the cupriferous horizon within this interval does not have sufficient width or grade to be economic, although, in zones of increased deformation, particularly zones of tight to isoclinal folding, the width and grade is significantly enhanced.

At the Blackard deposit, lenses of hypogene copper mineralisation are found within the hinge zones of a syncline-anticline pair where the mineralisation occurs as fine-grained disseminated chalcopyrite, bornite and chalcocite within calcite alteration, breccia matrix and veining. Mineralisation is zoned, with low-grade, chalcopyrite-dominated assemblages surrounded by a broad halo of weak calcite alteration around these lenses, grading into bornite-chalcocite in the core of the lenses. This mineralisation occurs as disseminations, blebs and veinlets associated with hydrothermal alteration.

The global resource for deposits of the Mt Roseby Corridor in 2012 (Altona Mining Ltd ASX release, August, 2012) was:
  Measured resource - 63.2 Mt @ 0.65% Cu, 0.05 g/t Au,
  Indicated resource - 76.7 Mt @ 0.55% Cu, 0.06 g/t Au,
  Inferred resource - 120.1 Mt @ 0.56% Cu, 0.04 g/t Au,
  Total resource - 260.1 Mt @ 0.58% Cu, 0.05 g/t Au,
      comprising 123.4 Mt @ 0.55% Cu, 0.10 g/t Au (Cu-Au deposits) + 136.7 Mt @ 0.61% Cu (Cu only deposits).
The largest copper-gold deposit is:
    Little Eva - 100.3 Mt @ 0.54% Cu 0.09 g/t Au
The larger copper only deposits within this resource are:
    Blackard - 76.4 Mt @ 0.62% Cu,
    Scanlan - 22.2 Mt @ 0.65% Cu,
    Longamundi - 10.4 Mt @ 0.66% Cu.

Return to top


The summaries above were prepared by T M (Mike) Porter from a wide range of sources, both published and un-published.   Most of these sources are listed on the "Tour Literature Collection" soon to be available from the IOCG 2013 Tour options page.

Porter GeoConsultancy Home | More on This Tour | Other Tours | New Tours

For more information contact:   T M (Mike) Porter, of Porter GeoConsultancy   (mike.porter@portergeo.com.au)

This tour was designed, developed, organised, managed and escorted by
T M (Mike) Porter of Porter GeoConsultancy Pty Ltd.

Porter GeoConsultancy Pty Ltd
6 Beatty Street
LINDEN PARK, 5065
South Australia
Telephone: +61 8 8379 7397
Mobile: +61 422 791 776



PGC Logo
Porter GeoConsultancy Pty Ltd
 International Study Tours
     Tour photo albums
 Ore deposit database
 Conferences & publications
 Experience
PGC Publishing
 Our books  &  bookshop
     Iron oxide copper-gold series
     Super-porphyry series
     Porhyry & Hydrothermal Cu-Au
 Ore deposit literature
 
 Contact  
 What's new
 Site map
 FacebookLinkedin