SELECT IOCG VOLUME ABSTRACTS   BUY  
Back Next Next
The Phalabowra (Palabora) Deposit and Its Potential Connection to Iron-Oxide Copper-Gold Deposits of Olympic Dam Type
 
by
Noreen M. Vielreicher, David I. Groves and Richard M. Vielreicher, The University of Western Australia.

in - Porter, T.M. (Ed), 2000 - Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, PGC Publishing, Adelaide, v. 1, pp 321-329.

ABSTRACT

   Phalaborwa is the second largest copper mine in the world and the largest in Africa. The orebody is hosted by the Loolekop pipe within the Phalaborwa Complex, and is also mined for magnetite, apatite, vermiculite with a large array of by-products including gold, silver, phosphate, rare earth elements and uranium. The Phalaborwa Complex intruded Archaean basement at the edge of the Kaapvaal Craton in early Proterozoic times (2060±1Ma) and consists of concentrically zoned, multiple intrusions which decrease in age from the margin to the core. The outer parts are predominantly clinopyroxenites, which have been variably metasomatised. Younger pegmatoidal pyroxenites intruded at three centres, including Loolekop, where foskerite and a banded carbonatite were also emplaced, followed by a transgressive carbonatite that intruded as the last magmatic phase along fracture and shear zones.
   Economic copper mineralisation is hosted predominantly within the transgressive carbonatite as disseminated grains and veinlets of chalcopyrite, with lesser bornite and cubanite. Magnetite is a primary igneous phase in all rocks and is paragenetically earlier than the copper sulphides. The quality and quantity of magnetite is zoned and its distribution is antithetic to that of copper. Ore fluids are high temperature, highly saline, CO
2-rich, magmatic-water dominated brines.
   The Complex and the mineralisation are interpreted to be products of the interaction of multiple pyroxenitic to carbonatitic magmas and their volatiles, which were ultimately derived from decompression melting of metasomatised mantle during extension at a transition from thick Archaean to thinner post-Archaean lithosphere.
   The orebody at Loolekop has many features including its age, giant size, pipe-like form, low ore grade, minor and major element associations and ore-fluid properties that are consistent with it being a proximal endmember of the widely recognised iron-oxide copper-gold deposit group. As such it helps explain characteristics such as the pipe-like brecciation as well as the common siting of these deposits at craton edges or other lithospheric boundaries.

Buy Top   |   PGC Publishing     |   PorterGeo Home


This book is NOW AVAILABLE FOR ORDER via the web by selecting the BUY button above.

This abstract was printed from the PGC Publishing website https://portergeo.com.au/publishing.


PGC Logo
Porter GeoConsultancy Pty Ltd
 Ore deposit database
 Conferences & publications
 International Study Tours
     Tour photo albums
 Experience
PGC Publishing
 Our books  &  bookshop
     Iron oxide copper-gold series
     Super-porphyry series
     Porphyry & Hydrothermal Cu-Au
 Ore deposit literature
 
 Contact  
 What's new
 Site map
 FacebookLinkedin